On Skew-Homomorphisms

B. Kuzma¹ G. Dolinar G. Nagy P. Szokol

¹UP FAMNIT

May 28, 2015

Restricted Skew-Morphisms

イロト 不得 とくほと くほとう

∃ 𝒫𝔅

Skew-morphism

Given a function $\Phi \colon \mathcal{A} \to \mathcal{A}$, let

•
$$\Phi^0 = \mathrm{Id}.$$

•
$$\Phi^k(x) = \Phi(\Phi^{k-1}(x)).$$

Φ⁻¹ the inverse of Φ.

Definition

 $\Phi \colon \mathcal{A} \to \mathcal{A} \text{ is skew-morphism if for some function } \kappa \colon \mathcal{A} \to \mathbb{N}$

$$\Phi(ab) = \Phi(a)\Phi^{\kappa(a)}(b)$$

For Φ bijective can also take $\kappa \colon A \to \mathbb{Z}$.

Restricted Skew-Morphisms

Skew-morphism

Given a function $\Phi \colon \mathcal{A} \to \mathcal{A}$, let

•
$$\Phi^0 = \mathrm{Id}$$

•
$$\Phi^k(x) = \Phi(\Phi^{k-1}(x)).$$

Φ⁻¹ the inverse of Φ.

Definition

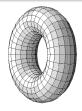
 $\Phi \colon \mathcal{A} \to \mathcal{A} \text{ is skew-morphism if for some function } \kappa \colon \mathcal{A} \to \mathbb{N}$

$$\Phi(ab) = \Phi(a)\Phi^{\kappa(a)}(b)$$

Remark

For Φ bijective can also take $\kappa \colon A \to \mathbb{Z}$.

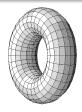
Background



- A map *M* is a 2-cell embedding of a simple connected graph Γ into oriented surface.
 - M is Cayley if exists subgroup A ≤ Aut⁺(M) acting regularly on V(Γ).
 - *M* is regular if ∀(a, b), (c, d) ∈ E(Γ) there is Φ ∈ Aut⁺(M) such that (Φ(a), Φ(b)) = (c, d).

Jajcay, Širáň (2002) Cayley map *M* is regular iff there exists certain unital skew-morphism.

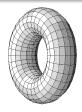
Background



- A map *M* is a 2-cell embedding of a simple connected graph Γ into oriented surface.
 - *M* is Cayley if exists subgroup *A* ≤ Aut⁺(*M*) acting regularly on *V*(Γ).
 - *M* is regular if ∀(a, b), (c, d) ∈ E(Γ) there is Φ ∈ Aut⁺(M) such that (Φ(a), Φ(b)) = (c, d).

Jajcay, Širáň (2002) Cayley map *M* is regular iff there exists certain unital skew-morphism.

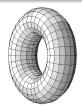
Background



- A map *M* is a 2-cell embedding of a simple connected graph Γ into oriented surface.
 - *M* is Cayley if exists subgroup *A* ≤ Aut⁺(*M*) acting regularly on *V*(Γ).
 - *M* is regular if ∀ (a, b), (c, d) ∈ E(Γ) there is Φ ∈ Aut⁺(M) such that (Φ(a), Φ(b)) = (c, d).

ajcay, Širáň (2002) Cayley map *M* is regular iff there exists certain unital skew-morphism.

Background



- A map *M* is a 2-cell embedding of a simple connected graph Γ into oriented surface.
 - *M* is Cayley if exists subgroup *A* ≤ Aut⁺(*M*) acting regularly on *V*(Γ).
 - *M* is regular if ∀ (a, b), (c, d) ∈ E(Γ) there is Φ ∈ Aut⁺(M) such that (Φ(a), Φ(b)) = (c, d).

Jajcay, Širáň (2002) Cayley map *M* is regular iff there exists certain unital skew-morphism.

Background

Cyclic extensions of groups!

 A, C ≤ G subgroups with A ∩ C = 1 and G = AC. Assume C = ⟨c⟩.

• Given $g = ac \in G$, we have

 $ca = \Phi(a)c^i$ for some $i \in \mathbb{Z}$

Then,

 $c(ab) = \Phi(ab)c^k$ = $(ca)b = \Phi(a)c^ib = \Phi(a)\Phi^i(b)c^b$

• By uniqueness, $c^k = c^t$ and

 $\Phi(ab) = \Phi(a)\Phi^i(b)$

for some $i = \kappa(a) \in \mathbb{Z}$

<ロ> (四) (四) (三) (三) (三) (三)

Background

Cyclic extensions of groups!

- $A, C \leq G$ subgroups with $A \cap C = 1$ and G = AC. Assume $C = \langle c \rangle$.
 - Given $g = ac \in G$, we have

$$\mathit{ca} = \Phi(\mathit{a})\mathit{c}^i \qquad ext{for some } i \in \mathbb{Z}$$

Then,

 $egin{aligned} c(ab) &= \Phi(ab)c^k \ &= (ca)b &= \Phi(a)c^ib &= \Phi(a)\Phi^i(b)c^k \end{aligned}$

• By uniqueness, $c^k = c^t$ and

$$\Phi(ab) = \Phi(a)\Phi^i(b)$$

for some $i = \kappa(a) \in \mathbb{Z}$

<ロ> (四) (四) (三) (三) (三)

Background

Cyclic extensions of groups!

- $A, C \leq G$ subgroups with $A \cap C = 1$ and G = AC. Assume $C = \langle c \rangle$.
 - Given $g = ac \in G$, we have

$$\mathit{ca} = \Phi(\mathit{a})\mathit{c}^i \qquad ext{for some } i \in \mathbb{Z}$$

Then,

 $c(ab) = \Phi(ab)c^{k}$ $= (ca)b = \Phi(a)c'b = \Phi(a)\Phi'(b)c'$

• By uniqueness, $c^k = c^t$ and

$$\Phi(ab) = \Phi(a)\Phi^i(b)$$

for some $i = \kappa(a) \in \mathbb{Z}$

<ロ> (四) (四) (三) (三) (三) (三)

Restricted Skew-Morphisms

Background

Cyclic extensions of groups!

- $A, C \leq G$ subgroups with $A \cap C = 1$ and G = AC. Assume $C = \langle c \rangle$.
 - Given $g = ac \in G$, we have

$$\mathit{ca} = \Phi(\mathit{a})\mathit{c}^i \qquad ext{for some } i \in \mathbb{Z}$$

Then,

$$egin{aligned} c(ab) &= \Phi(ab)c^k \ &= (ca)b &= \Phi(a)c^ib &= \Phi(a)\Phi^i(b)c^t \end{aligned}$$

• By uniqueness, $c^k = c^t$ and

$$\Phi(ab) = \Phi(a)\Phi^i(b)$$

for some $i = \kappa(a) \in \mathbb{Z}$

ヘロン 人間 とくほ とくほとう

3

Restricted Skew-Morphisms

Background

Cyclic extensions of groups!

- $A, C \leq G$ subgroups with $A \cap C = 1$ and G = AC. Assume $C = \langle c \rangle$.
 - Given $g = ac \in G$, we have

$$ca = \Phi(a)c^i$$
 for some $i \in \mathbb{Z}$

Then,

$$egin{aligned} c(ab) &= \Phi(ab)c^k \ &= (ca)b &= \Phi(a)c^ib &= \Phi(a)\Phi^i(b)c^t \end{aligned}$$

• By uniqueness, $c^k = c^t$ and

$$\Phi(ab) = \Phi(a)\Phi^i(b)$$

for some $i = \kappa(a) \in \mathbb{Z}$

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

3

Case $\kappa(G) = 0$

Lemma

$$\Phi: M_n(\mathbb{F}) \to M_n(\mathbb{F})$$
 skew-morphism.
If $\kappa(G) = 0$ for some $G \in \operatorname{GL}_n(\mathbb{F})$ then

 $\Phi(X)=MX.$

Proof.

$$\Phi(X) = \Phi(G \cdot G^{-1}X) = \Phi(G)\Phi^{\kappa(G)}(G^{-1}X) = \Phi(G) \cdot G^{-1}X.$$

Define $M := \Phi(G)G^{-1}$.

ヘロン 人間 とくほ とくほ とう

æ

Case Φ linear.

Theorem

 $\Phi: M_n(\mathbb{F}) \to M_n(\mathbb{F})$ linear skew-morphism. Then

 $\Phi(X) = MXN.$ where $N \in GL_n(\mathbb{F})$ and $N^{1-s} = NM^s = \lambda I.$

Corollary

 $\Phi: M_n(\mathbb{F}) \to M_n(\mathbb{F})$ linear, unital skew-morphism. Then

$$\Phi(X) = N^{-1}XN.$$

イロン 不良 とくほう 不良 とうせい

Case Φ linear.

Theorem

 $\Phi: M_n(\mathbb{F}) \to M_n(\mathbb{F})$ linear skew-morphism. Then exists $s \in \mathbb{N}$ and $\lambda \in \mathbb{F}$ such that

 $\Phi(X) = MXN$ where $N \in GL_n(\mathbb{F})$ and $N^{1-s} = NM^s = \lambda I$.

Corollary

 $\Phi: M_n(\mathbb{F}) \to M_n(\mathbb{F})$ linear, unital skew-morphism. Then

 $\Phi(X) = N^{-1}XN.$

<ロ> (四) (四) (三) (三) (三)

Case Φ linear.

Theorem

 $\Phi: M_n(\mathbb{F}) \to M_n(\mathbb{F})$ linear skew-morphism. Then exists $s \in \mathbb{N}$ and $\lambda \in \mathbb{F}$ such that

 $\Phi(X) = MXN$ where $N \in GL_n(\mathbb{F})$ and $N^{1-s} = NM^s = \lambda I$.

Corollary

 $\Phi\colon M_n(\mathbb{F})\to M_n(\mathbb{F})$ linear, unital skew-morphism. Then

$$\Phi(X)=N^{-1}XN.$$

ъ

ヘロト ヘアト ヘビト ヘビト

General surjective Φ

Example

There exists a nonlinear unital, bijective skew-morphism $\Phi: M_2(\mathbb{Z}_2) \to M_2(\mathbb{Z}_2).$

 $\phi\left(\begin{pmatrix}0&1\\1&0\end{pmatrix}\right) = \begin{pmatrix}0&1\\1&1\end{pmatrix}, \kappa\left(\begin{pmatrix}0&1\\1&0\end{pmatrix}\right) = 2,$ $\phi\left(\begin{pmatrix}1&1\\1&0\end{pmatrix}\right) = \begin{pmatrix}1&1\\0&1\end{pmatrix}, \kappa\left(\begin{pmatrix}1&1\\1&0\end{pmatrix}\right) = 2,$ $\phi\left(\begin{pmatrix}1&0\\0&1\end{pmatrix}\right) = \begin{pmatrix}1&0\\0&1\end{pmatrix}, \kappa\left(\begin{pmatrix}1&0\\0&1\end{pmatrix}\right) = 1,$ $\phi\left(\begin{pmatrix}0&0\\1&0\end{pmatrix}\right) = \begin{pmatrix}0&0\\1&0\end{pmatrix}, \kappa\left(\begin{pmatrix}0&0\\1&0\end{pmatrix}\right) = 2,$ $\phi\left(\begin{pmatrix}0 & 0\\ 1 & 1\end{pmatrix}\right) = \begin{pmatrix}0 & 0\\ 0 & 1\end{pmatrix}, \kappa\left(\begin{pmatrix}0 & 0\\ 1 & 1\end{pmatrix}\right) = 3,$ $\phi\left(\begin{pmatrix}0&1\\0&1\end{pmatrix}\right) = \begin{pmatrix}1&1\\0&0\end{pmatrix}, \ \kappa\left(\begin{pmatrix}0&1\\0&1\end{pmatrix}\right) = 1,$ $\phi\left(\begin{pmatrix}1&1\\1&1\end{pmatrix}\right) = \begin{pmatrix}0&1\\0&0\end{pmatrix}, \kappa\left(\begin{pmatrix}1&1\\1&1\end{pmatrix}\right) = 3,$ $\phi\left(\begin{pmatrix}1&0\\0&0\end{pmatrix}\right) = \begin{pmatrix}1&0\\1&0\end{pmatrix}, \kappa\left(\begin{pmatrix}1&0\\0&0\end{pmatrix}\right) = 0,$

 $\phi\left(\begin{pmatrix}0&1\\1&1\end{pmatrix}\right) = \begin{pmatrix}1&1\\1&0\end{pmatrix}, \kappa\left(\begin{pmatrix}0&1\\1&1\end{pmatrix}\right) = 3,$ $\phi\left(\begin{pmatrix}1&1\\0&1\end{pmatrix}\right) = \begin{pmatrix}0&1\\1&0\end{pmatrix}, \kappa\left(\begin{pmatrix}1&1\\0&1\end{pmatrix}\right) = 1,$ $\phi\left(\begin{pmatrix}1&0\\1&1\end{pmatrix}\right) = \begin{pmatrix}1&0\\1&1\end{pmatrix}, \kappa\left(\begin{pmatrix}1&0\\1&1\end{pmatrix}\right) = 3,$ $\phi\left(\begin{pmatrix}0 & 0\\ 0 & 1\end{pmatrix}\right) = \begin{pmatrix}0 & 0\\ 1 & 1\end{pmatrix}, \kappa\left(\begin{pmatrix}0 & 0\\ 0 & 1\end{pmatrix}\right) = 1,$ $\phi\left(\begin{pmatrix}0&1\\0&0\end{pmatrix}\right) = \begin{pmatrix}0&1\\0&1\end{pmatrix}, \kappa\left(\begin{pmatrix}0&1\\0&0\end{pmatrix}\right) = 0,$ $\phi\left(\begin{pmatrix}1&1\\0&0\end{pmatrix}\right) = \begin{pmatrix}1&1\\1&1\end{pmatrix}, \kappa\left(\begin{pmatrix}1&1\\0&0\end{pmatrix}\right) = 0,$ $\phi\left(\begin{pmatrix}1&0\\1&0\end{pmatrix}\right) = \begin{pmatrix}1&0\\0&0\end{pmatrix}, \kappa\left(\begin{pmatrix}1&0\\1&0\end{pmatrix}\right) = 2,$ $\phi\left(\begin{pmatrix}0&0\\0&0\end{pmatrix}\right) = \begin{pmatrix}0&0\\0&0\end{pmatrix}, \ \kappa\left(\begin{pmatrix}0&0\\0&0\end{pmatrix}\right) = 1.$

General surjective Φ

Theorem

 $\Phi\colon \textit{M}_n(\mathbb{F})\to\textit{M}_n(\mathbb{F})$ surjective skew-morphism. Then

•
$$\operatorname{rk} \Phi(X) = \operatorname{rk} X$$
.

• If $\kappa(\operatorname{GL}_n) \ge 1$ and $\kappa(G) > 1$ for some $G \in \operatorname{GL}_n(\mathbb{F})$ THEN $\Phi^s = \operatorname{id}$ for some $s \ge 1$.

• Assume $\kappa(\operatorname{GL}_n) = \{1\}$. Then, $\Phi(X) = \begin{cases} S^{-1}X_{\sigma}S, & X \in \operatorname{GL}_n \\ \gamma S^{-1}X_{\sigma}G, & X \in M_n \backslash \operatorname{GL}_n \end{cases}$

 $(n \ge 3)$

General surjective Φ

Theorem

 $\Phi\colon \textit{M}_{\textit{n}}(\mathbb{F})\to\textit{M}_{\textit{n}}(\mathbb{F})$ surjective skew-morphism. Then

•
$$\operatorname{rk} \Phi(X) = \operatorname{rk} X$$
.

- If $\kappa(\operatorname{GL}_n) \ge 1$ and $\kappa(G) > 1$ for some $G \in \operatorname{GL}_n(\mathbb{F})$ THEN $\Phi^s = \operatorname{id}$ for some $s \ge 1$.
- Assume $\kappa(\operatorname{GL}_n) = \{1\}$. Then, contains $\kappa(\operatorname{GL}_n) = \{1\}$.

$$\Phi(X) = \begin{cases} S^{-1}X_{\sigma}S, & X \in \mathrm{GL}_n \\ \gamma S^{-1}X_{\sigma}G, & X \in M_n \backslash \mathrm{GL}_n, \end{cases}$$
(n ≥ 3)

General surjective Φ

Theorem

 $\Phi\colon \textit{M}_n(\mathbb{F})\to\textit{M}_n(\mathbb{F})$ surjective skew-morphism. Then

•
$$\operatorname{rk} \Phi(X) = \operatorname{rk} X$$
.

- If $\kappa(\operatorname{GL}_n) \ge 1$ and $\kappa(G) > 1$ for some $G \in \operatorname{GL}_n(\mathbb{F})$ THEN $\Phi^s = \operatorname{id}$ for some $s \ge 1$.
- Assume $\kappa(\operatorname{GL}_n) = \{1\}$. Then, concentration of $-\kappa_{n-1}$ and

$$\Phi(X) = \begin{cases} S^{-1}X_{\sigma}S, & X \in \mathrm{GL}_{n} \\ \gamma S^{-1}X_{\sigma}G, & X \in M_{n} \backslash \mathrm{GL}_{n}, \end{cases}$$
$$\Phi(X) = \begin{cases} \gamma S^{-1}\mathrm{Cof}(X_{\sigma})G, & X \in \mathrm{GL}_{n} \\ \gamma S^{-1}\mathrm{Cof}(x_{\sigma})\mathrm{Cof}^{s}(f_{\sigma}^{t})G, & X = xf^{t} \in M_{n} \backslash \mathrm{GL}_{n}, \end{cases}$$

General surjective Φ

Theorem

 $\Phi\colon \textit{M}_{\textit{n}}(\mathbb{F})\to\textit{M}_{\textit{n}}(\mathbb{F})$ surjective skew-morphism. Then

•
$$\operatorname{rk} \Phi(X) = \operatorname{rk} X$$
.

• If $\kappa(\operatorname{GL}_n) \ge 1$ and $\kappa(G) > 1$ for some $G \in \operatorname{GL}_n(\mathbb{F})$ THEN $\Phi^s = \operatorname{id}$ for some $s \ge 1$.

• Assume $\kappa(\operatorname{GL}_n) = \{1\}$. Then, $\operatorname{Cof}(a, b) := (-b, a)$

$$\Phi(X) = \begin{cases} S^{-1}X_{\sigma}S, & X \in \mathrm{GL}_{n} \\ \gamma S^{-1}X_{\sigma}G, & X \in M_{n} \backslash \mathrm{GL}_{n}, \end{cases}$$

$$\Phi(X) = \begin{cases} \gamma S^{-1}\mathrm{Cof}(X_{\sigma})G, & X \in \mathrm{GL}_{n} \\ \gamma S^{-1}\mathrm{Cof}(x_{\sigma})\mathrm{Cof}^{s}(f_{\sigma}^{t})G, & X = xf^{t} \in M_{n} \backslash \mathrm{GL}_{n}, \end{cases}$$

Proofs: Case Φ linear.

Theorem

 $\Phi \colon M_n(\mathbb{F}) \to M_n(\mathbb{F})$ linear skew-morphism. Then $\Phi(X) = MXN$.

Proof.

WLOG $\kappa(G) \geq 1$ for each $G \in \operatorname{GL}_n(\mathbb{F})$.

(i) Assume $0 \neq A \in \operatorname{Ker} \Phi$.

• Take any rank-one $R = x f^t$.

Exists invertible S and rank-one T such that

R = SAT.

• Hence, $\kappa(S) \geq 1$, so

 $\Phi(R) = \Phi(S)\Phi^{\kappa(S)}(AT) = \Phi(S)\Phi^{\kappa(S)-1}(\Phi(A)\Phi^{\kappa(A)}(T))$ $= \Phi(S)\Phi^{\kappa(S)-1}(0) = 0.$

Proofs: Case Φ linear.

Theorem

 $\Phi \colon M_n(\mathbb{F}) \to M_n(\mathbb{F})$ linear skew-morphism. Then $\Phi(X) = MXN$.

Proof.

WLOG
$$\kappa(G) \geq 1$$
 for each $G \in \operatorname{GL}_n(\mathbb{F})$.

(i) Assume $0 \neq A \in \operatorname{Ker} \Phi$.

- Take any rank-one $R = xf^t$.
- Exists invertible S and rank-one T such that

$$R = SAT.$$

• Hence, $\kappa(S) \geq 1$, so

$$\Phi(R) = \Phi(S)\Phi^{\kappa(S)}(AT) = \Phi(S)\Phi^{\kappa(S)-1}(\Phi(A)\Phi^{\kappa(A)}(T))$$
$$= \Phi(S)\Phi^{\kappa(S)-1}(0) = 0.$$

Proofs: Case Φ linear.

Proof.

WLOG $\kappa(G) \geq 1$ for each $G \in GL_n(\mathbb{F})$.

(i) Assume $0 \neq A \in \operatorname{Ker} \Phi$.

- Take any rank-one $R = xf^t$.
- Exists invertible S and rank-one T such that

$$R = SAT$$
.

 $\Phi(R) = \Phi(S)\Phi^{\kappa(S)}(AT) = \Phi(S)\Phi^{\kappa(S)-1}(\Phi(A)\Phi^{\kappa(A)}(T))$ $= \Phi(S)\Phi^{\kappa(S)-1}(0) = 0.$

• So,
$$\Phi(X) = 0 = 0 \cdot X \cdot I$$
.

ヘロト ヘアト ヘビト ヘビト

3

Proofs: Case Φ linear.

Proof.

WLOG $\kappa(G) \geq 1$ for each $G \in \operatorname{GL}_n(\mathbb{F})$.

(ii) Assume Ker $\Phi = 0$. Then:

• Φ bijective.

•
$$\Phi(\operatorname{GL}_n) \subseteq \operatorname{GL}_n$$

• Hence, $\Phi^{-1}(\operatorname{Sing}_n) \subseteq \operatorname{Sing}_n$. By Dieudonné

(i) $\Phi(X) = MXN$ or (ii) $\Phi(X) = MX^tN$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Proofs: Case Φ linear.

Proof.

WLOG
$$\kappa(G) \geq 1$$
 for each $G \in \operatorname{GL}_n(\mathbb{F})$.

(ii) Assume Ker $\Phi = 0$. Then:

Φ bijective.

•
$$\Phi(\operatorname{GL}_n) \subseteq \operatorname{GL}_n$$

• By surjectivity $\exists B \in M_n$ such that $\phi(B) = I$. Hence,

$$I = \phi(B) = \phi(IB) = \phi(I)\phi^{\kappa(I)}(B).$$

So, $\phi(I)$ invertible. Then, for $A \in GL_n$:

$$\phi(I) = \phi(AA^{-1}) = \phi(A)\phi^{\kappa(A)}(A^{-1})$$

and $\phi(A)$ is also invertible. So $\phi(GL_n) \subseteq GL_n$.

Proofs: Case Φ linear.

Proof.

WLOG
$$\kappa(G) \geq 1$$
 for each $G \in GL_n(\mathbb{F})$.

(ii) Assume Ker $\Phi = 0$. Then:

Φ bijective.

•
$$\Phi(\operatorname{GL}_n) \subseteq \operatorname{GL}_n$$
.

• Hence, $\Phi^{-1}(\operatorname{Sing}_n) \subseteq \operatorname{Sing}_n$. By Dieudonné

(i) $\Phi(X) = MXN$ or (ii) $\Phi(X) = MX^tN$. \Box

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Restricted Skew-Morphisms

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

- Each homomorphism is also a skew-morphism. On M_n(𝔅) they take three forms:
 (i) Φ(X) = f(det X)S⁻¹X_σS or
 (ii) Φ(X) = f(det X)S⁻¹Cof(X_σ)S or
 - (iii) are degenerate.
- Our approach would classify those unital skew-morphisms on GL_n with extensions to M_n.

ヘロト ヘアト ヘビト ヘビト

1