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Payan, 1980

A stable set (or independent set) in a graph G =(V,E) is a
subset S C V such that no two vertices in S are adjacent.
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A stable set (or independent set) in a graph G =(V,E) is a
subset S C V such that no two vertices in S are adjacent.

A stable set is maximal if it is not properly contained in any other
stable set.
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Equistable graphs
Payan, 1980

A stable set (or independent set) in a graph G =(V,E) is a
subset S C V such that no two vertices in S are adjacent.

A stable set is maximal if it is not properly contained in any other
stable set.

Definition

A graph G is said to be equistable if there exists a mapping
¢ : V —[0,1] such that for all SC V,

S isamaximal stable set <= ¢(S) := Z p(v)=1.

VES
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Equistable graphs
Payan, 1980

A stable set (or independent set) in a graph G =(V,E) is a
subset S C V such that no two vertices in S are adjacent.

A stable set is maximal if it is not properly contained in any other
stable set.

Definition

A graph G is said to be equistable if there exists a mapping
¢ : V —[0,1] such that for all SC V,

S isamaximal stable set <= ¢(S) := Z p(v)=1.

VES

Such a ¢ is called an equistable weight function of G.
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in connection to some other graph classes

Mahadev et al., 1994

Definition
- Given a graph G = (V,E), let
Strongly CQUIStabIC Z(G) be the set of all maximal

stable sets of G, and .77 (G) the
set of all other nonempty subsets

Equistable of V(G).
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Definition
- Given a graph G = (V,E), let
Strongly CQUIStabIC Z(G) be the set of all maximal

stable sets of G, and .77 (G) the
set of all other nonempty subsets
Equjstable of V(G). A graph is said to be
strongly equistable if for each

T € 7(G) and for aech y <1,
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in connection to some other graph classes

Mahadev et al., 1994

Definition
- Given a graph G = (V,E), let
Strongly CQUIStabIC Z(G) be the set of all maximal

stable sets of G, and .77 (G) the
set of all other nonempty subsets
Equjstable of V(G). A graph is said to be
strongly equistable if for each

T € 7(G) and for aech y <1,
there exists a mapping

¢ : V —[0,1] such that ¢(S) =1
for all S €.(G) and ¢(T) #Yy. )
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in connection to some other graph classes

Cleneral partition DeTemple et al., 1989

Theorem (McAvaney et al.,

1993)
Strongly equistable A graph G is a general
partition graph if and only if
U’ every edge of G is contained
Equistable in a strong clique.
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General partition McAvaney et al., 1993

U Triangle condition

For every maximal stable set S

Strongly equistable in G=(V,E) and every edge

U, uv in G — S there is a vertex
- s € S such that {u,v,s}
Equistable induces a triangle in G.
Triangle

Boros, Chiarelli, Milanic¢ Equistarable Bipartite Graphs



Equistable graphs

Equistable graphs

in connection to some other graph classes

General partition McAvaney et al., 1993

U Triangle condition

For every maximal stable set S
in G =(V,E) and every edge

Strongly equistable

U, uv in G — S there is a vertex
- s € S such that {u,v,s}
Equistable induces a triangle in G.
Triangle

Graphs satisfying this condi-
tion are called triangle graphs.
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Milani¢, Trotignon, 2014

Given a graph G and a vertex v € V(G), the star rooted at v is
the set E(v) of all edges incident with v.
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Given a graph G and a vertex v € V(G), the star rooted at v is
the set E(v) of all edges incident with v.

A star of G is said to be maximal if it is not properly contained in
another star of G.
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Given a graph G and a vertex v € V(G), the star rooted at v is
the set E(v) of all edges incident with v.

A star of G is said to be maximal if it is not properly contained in
another star of G.

Definition
A graph G = (V,E) is said to be equistarable if there exists a
mapping ¢ : E — [0,1] such that for all F C E,

F isamaximal star <= ¢ (F) = 1.
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Milani¢, Trotignon, 2014

Given a graph G and a vertex v € V(G), the star rooted at v is
the set E(v) of all edges incident with v.

A star of G is said to be maximal if it is not properly contained in
another star of G.

Definition
A graph G = (V,E) is said to be equistarable if there exists a
mapping ¢ : E — [0,1] such that for all F C E,

F isamaximal star <= ¢ (F) = 1.

Such a ¢ is called an equistarable weight function of G.
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Recall: A graph G is 2-extendable if it is connected, contains a
2-matching and every 2-matching extends into a perfect matching.
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Equistarable graphs

Recall: A graph G is 2-extendable if it is connected, contains a
2-matching and every 2-matching extends into a perfect matching.

A perfect internal matching is a matching that covers all the
vertices of the graph, except maybe some leaves (vertices of
degree 1).
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Equistarable graphs

Recall: A graph G is 2-extendable if it is connected, contains a
2-matching and every 2-matching extends into a perfect matching.

A perfect internal matching is a matching that covers all the
vertices of the graph, except maybe some leaves (vertices of
degree 1).

Definition

A graph is 2-internally extendable if every 2-matching can be
extended to a perfect internal matching.
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Definition

A graph is Ps-constrained if every vertex of degree 2 is not a
central vertex of a Ps.
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A graph is Ps-constrained if every vertex of degree 2 is not a
central vertex of a Ps.

Ps-constrained
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Definition

A graph is Ps-constrained if every vertex of degree 2 is not a
central vertex of a Ps.

r—————@

Ps-constrained not Ps-constrained
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Bipartite graphs

A graph is bipartite if its vertex set can be partitioned into two
stable sets.
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Special cases Forests

Bipartite graphs

A graph is bipartite if its vertex set can be partitioned into two
stable sets.

For a bipartite graph G the following are equivalent:
(a) Every connected component of G is either a star or 2-internally
extendable.

(b) G is strongly equistarable.

(c) G is equistarable.
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Proof sketch

Since bipartite graphs are triangle-free, we know (a)=-(b)=-(c).
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Proof sketch

Since bipartite graphs are triangle-free, we know (a)=-(b)=-(c).
To prove (c)=-(a), we used:
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Special cases Forests

Proof sketch

Since bipartite graphs are triangle-free, we know (a)=-(b)=-(c).
To prove (c)=-(a), we used:

Let G be a connected equistarable bipartite graph with 6(G) > 2.
Then, G is 1-extendable.
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Proof sketch

Since bipartite graphs are triangle-free, we know (a)=-(b)=-(c).
To prove (c)=-(a), we used:

Lemma

Let G be a connected equistarable bipartite graph with 6(G) > 2.
Then, G is 1-extendable.

A\

Theorem (Plummer)

Let k> 1 and let G = (V,E) be a connected bipartite graph with a
bipartition {A, B} of its vertex set and V > 2k. Then, G is
k-extendable if and only if |A| = |B| and for all non-empty subsets
X C A with | X| < |A| —k, it holds that |[N(X)| > | X|+ k.

\
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Furthermore...

there are examples of Ps-constrained bipartite graphs that are not
equistarable.
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Furthermore...

there are examples of Ps-constrained bipartite graphs that are not
equistarable.
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Furthermore...

there are examples of Ps-constrained bipartite graphs that are not
equistarable.

—— ° Suppose:
Al =k
|B|=1
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Furthermore...

there are examples of Ps-constrained bipartite graphs that are not
equistarable.

Suppose:

7 P
4 A

Every such graph with

N AT

. . 3<I<k+1
° is not 2-internally extend-
— able.
A B
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A forest is an acyclic graph.
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Special cases Forests

A forest is an acyclic graph.

Theorem

For every forest F the following are equivalent:

(a) Every connected component of F either a star or 2-internally
extendable.

(b) F is strongly equistarable.

(c) F is equistarable.

(d) F is Ps-constrained.
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Since forests are acyclic and therefore triangle-free,
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Proof sketch

Since forests are acyclic and therefore triangle-free, we know

(a)=(b)=(c)=(d)

(d)=(a)
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Proof sketch

Since forests are acyclic and therefore triangle-free, we know

(a)=(b)=(c)=(d)

(d)=(a)

Every tree T with |[E(T)| > 1 is l-internally extendable.
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Proof sketch

Since forests are acyclic and therefore triangle-free, we know

(a)=(b)=(c)=(d)

(d)=(a)

Every tree T with |[E(T)| > 1 is l-internally extendable.

Let F be Ps-constrained. We can assume that F is connected and
not a star.
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Special cases Forests

Proof sketch

Since forests are acyclic and therefore triangle-free, we know

(a)=(b)=(c)=(d)

(d)=(a)

Every tree T with |[E(T)| > 1 is l-internally extendable.

Let F be Ps-constrained. We can assume that F is connected and
not a star.

Fix a 2-matching M = {e,f}, and consider the (unique) shortest
path P between e and f.
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Special cases Forests

We construct another matchig M’ by putting in for every vertex of

P, not covered by M, an arbitrary edge incident with it and not in
P.

(Since F is Ps-constrained, all the vertices of P have degree > 3.)
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Special cases Forests

We construct another matchig M’ by putting in for every vertex of

P, not covered by M, an arbitrary edge incident with it and not in
P.

(Since F is Ps-constrained, all the vertices of P have degree > 3.)

Delete from the graph all the edges in E(P).
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Special cases Forests

We construct another matchig M’ by putting in for every vertex of
P, not covered by M, an arbitrary edge incident with it and not in
P.

(Since F is Ps-constrained, all the vertices of P have degree > 3.)
Delete from the graph all the edges in E(P).

What we have left is a forest F’ consisting of some nontrivial trees,
each of which contains at most one edge of M’ U M. By the
previous lemma matching M’ U M can be extended to a perfect
internal matching of F.
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Special cases Forests

We construct another matchig M’ by putting in for every vertex of
P, not covered by M, an arbitrary edge incident with it and not in
P.

(Since F is Ps-constrained, all the vertices of P have degree > 3.)
Delete from the graph all the edges in E(P).

What we have left is a forest F’ consisting of some nontrivial trees,
each of which contains at most one edge of M’ U M. By the
previous lemma matching M’ U M can be extended to a perfect
internal matching of F.

Therefore, every connected component of F is either a star or
2-internally extendable.
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Conclusion

We characterized equistarable bipartite graphs using the notions of
matching extendability.

Boros, Chiarelli, Milanic¢ Equistarable Bipartite Graphs



Conclusion

Conclusion

We characterized equistarable bipartite graphs using the notions of
matching extendability.
Consequences:

@ Polynomial time recognition of equistarable bipartite graphs.

Boros, Chiarelli, Milanic¢ Equistarable Bipartite Graphs



Conclusion

Conclusion

We characterized equistarable bipartite graphs using the notions of
matching extendability.
Consequences:

@ Polynomial time recognition of equistarable bipartite graphs.

@ Linear time recognition for equistarable forests.
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We characterized equistarable bipartite graphs using the notions of
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Consequences:

@ Polynomial time recognition of equistarable bipartite graphs.

@ Linear time recognition for equistarable forests.

@ Orlin's conjecture holds in the class of complements of line
graphs of bipartite graphs.
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Consequences:

@ Polynomial time recognition of equistarable bipartite graphs.

@ Linear time recognition for equistarable forests.

@ Orlin's conjecture holds in the class of complements of line
graphs of bipartite graphs.

Open questions

- What is the complexity of recognizing equistarable graphs?
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Conclusion

Conclusion

We characterized equistarable bipartite graphs using the notions of
matching extendability.
Consequences:

@ Polynomial time recognition of equistarable bipartite graphs.

@ Linear time recognition for equistarable forests.

@ Orlin's conjecture holds in the class of complements of line
graphs of bipartite graphs.

Open questions

- What is the complexity of recognizing equistarable graphs?
- Is every perfect equistable graph a general partition graph?
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Thank you!
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