REPUBLIKA SLOVENIJA
MINISTRSTVO ZA IZOBRAŽEVANJE, ZNANOST IN ŠPORT

Naložba v vašo prihodnost OPERACIJO DELNO FINANCIRA EVROPSKA UNIJA Evropski socialni sklad

Coloring graphs without long induced paths

Oliver Schaudt
Universität zu Köln \& RWTH Aachen

with Flavia Bonomo, Maria Chudnovsky, Jan Goedgebeur, Peter Maceli, Maya Stein, and Mingxian Zhong

Graph coloring

Graph coloring

- a \mathbf{k}-coloring is an assignment of numbers $\{1,2, \ldots, k\}$ to the vertices such that any two adjacent vertices receive distinct numbers

Graph coloring

- a \mathbf{k}-coloring is an assignment of numbers $\{1,2, \ldots, k\}$ to the vertices such that any two adjacent vertices receive distinct numbers

Graph coloring

- a \mathbf{k}-coloring is an assignment of numbers $\{1,2, \ldots, k\}$ to the vertices such that any two adjacent vertices receive distinct numbers

Graph coloring

- a \mathbf{k}-coloring is an assignment of numbers $\{1,2, \ldots, k\}$ to the vertices such that any two adjacent vertices receive distinct numbers

Graph coloring

- a \mathbf{k}-coloring is an assignment of numbers $\{1,2, \ldots, k\}$ to the vertices such that any two adjacent vertices receive distinct numbers

Graph coloring

- a \mathbf{k}-coloring is an assignment of numbers $\{1,2, \ldots, k\}$ to the vertices such that any two adjacent vertices receive distinct numbers

Graph coloring

- a \mathbf{k}-coloring is an assignment of numbers $\{1,2, \ldots, k\}$ to the vertices such that any two adjacent vertices receive distinct numbers

- the related decision problem is called \mathbf{k}-colorability

Graph coloring

- a \mathbf{k}-coloring is an assignment of numbers $\{1,2, \ldots, k\}$ to the vertices such that any two adjacent vertices receive distinct numbers

- the related decision problem is called \mathbf{k}-colorability
- it is NP-complete for every $k \geq 3$

k-colorability in H -free graphs

k-colorability in H -free graphs

- fix some graph H

k-colorability in H -free graphs

- fix some graph H
- a graph G is \mathbf{H}-free if it does not contain H as an induced subgraph

k-colorability in H -free graphs

- fix some graph H
- a graph G is \mathbf{H}-free if it does not contain H as an induced subgraph
- that is, H cannot be obtained from G by deleting vertices

k-colorability in H -free graphs

- fix some graph H
- a graph G is \mathbf{H}-free if it does not contain H as an induced subgraph
- that is, H cannot be obtained from G by deleting vertices

Theorem (Lozin \& Kaminski 2007)
Let H be any graph that is not the disjoint union of paths. Then k-colorability is NP-complete in the class of H-free graphs, for all $k \geq 3$.

k-colorability in H -free graphs

k-colorability in H -free graphs

Theorem (Lozin \& Kaminski 2007)
Let H be any graph that is not the disjoint union of paths. Then k-colorability is NP-complete in the class of H-free graphs, for all $k \geq 3$.

k-colorability in H -free graphs

Theorem (Lozin \& Kaminski 2007)
Let H be any graph that is not the disjoint union of paths. Then k-colorability is NP-complete in the class of H-free graphs, for all $k \geq 3$.

- leads to the study of $P_{t^{-}}$-free graphs

k-colorability in H -free graphs

Theorem (Lozin \& Kaminski 2007)
Let H be any graph that is not the disjoint union of paths. Then k-colorability is NP-complete in the class of H-free graphs, for all $k \geq 3$.

- leads to the study of P_{t}-free graphs
- P_{t} is the path on t vertices

k-colorability in H -free graphs

Theorem (Lozin \& Kaminski 2007)
Let H be any graph that is not the disjoint union of paths. Then k-colorability is NP -complete in the class of H -free graphs, for all $k \geq 3$.

- leads to the study of $P_{t^{-}}$-free graphs
- P_{t} is the path on t vertices

$123 \quad \cdots \quad t$

k-colorability in $P_{t^{-}}$-free graphs

k-colorability in $P_{t^{t}}$-free graphs

Theorem (Hóang et al. 2010)
For fixed k, the k-colorability problem is solvable in polynomial time in the class of P_{5}-free graphs.

k-colorability in P_{t}-free graphs

Theorem (Hóang et al. 2010)
For fixed k, the k-colorability problem is solvable in polynomial time in the class of P_{5}-free graphs.

Theorem (Huang 2013)
If $k \geq 5$, the k-colorability problem is $N P$-hard for P_{6}-free graphs.

k-colorability in P_{t}-free graphs

Theorem (Hóang et al. 2010)
For fixed k, the k-colorability problem is solvable in polynomial time in the class of P_{5}-free graphs.

Theorem (Huang 2013)
If $k \geq 5$, the k-colorability problem is $N P$-hard for P_{6}-free graphs.
The 4-colorability problem is NP-hard for P_{7}-free graphs.

k-colorability in P_{t}-free graphs

Theorem (Hóang et al. 2010)
For fixed k, the k-colorability problem is solvable in polynomial time in the class of P_{5}-free graphs.

Theorem (Huang 2013)
If $k \geq 5$, the k-colorability problem is $N P$-hard for P_{6}-free graphs.
The 4-colorability problem is NP-hard for P_{7}-free graphs.

Open Problem
Determine the complexity of 4-colorability for P_{6}-free graphs.

3-colorability in P_{t}-free graphs

3-colorability in $P_{t^{-}}$-free graphs

Theorem (Randerath and Schiermeyer 2004)
The 3-colorability problem can be solved in polynomial time for P_{6}-free graphs.

3-colorability in $P_{t^{-}}$-free graphs

Theorem (Randerath and Schiermeyer 2004)
The 3-colorability problem can be solved in polynomial time for P_{6}-free graphs.

Theorem (Bonomo, Chudnovsky, Maceli, S, Stein, Zhong '14)
The 3-colorability problem can be solved in polynomial time for P_{7}-free graphs.

3-colorability in $P_{t^{-}}$-free graphs

Theorem (Randerath and Schiermeyer 2004)
The 3-colorability problem can be solved in polynomial time for P_{6}-free graphs.

Theorem (Bonomo, Chudnovsky, Maceli, S, Stein, Zhong '14)
The 3-colorability problem can be solved in polynomial time for P_{7}-free graphs.

Open Problem
Is there any t such that 3 -colorability is NP-hard for P_{t}-free graphs?

3-colorability in P_{7}-free graphs

3-colorability in P_{7}-free graphs

Theorem (Bonomo, Chudnovsky, Maceli, S, Stein, Zhong '14)
The 3-colorability problem can be solved in polynomial time for P_{7}-free graphs.

3-colorability in P_{7}-free graphs

Theorem (Bonomo, Chudnovsky, Maceli, S, Stein, Zhong '14)
The 3-colorability problem can be solved in polynomial time for P_{7}-free graphs.

- we can also solve the list 3-colorability problem

3-colorability in P_{7}-free graphs

Theorem (Bonomo, Chudnovsky, Maceli, S, Stein, Zhong '14) The 3-colorability problem can be solved in polynomial time for P_{7}-free graphs.

- we can also solve the list 3-colorability problem
- each vertex is assigned a subset of $\{1,2,3\}$ of admissible colors (a so-called palette)

3-colorability in P_{7}-free graphs

Theorem (Bonomo, Chudnovsky, Maceli, S, Stein, Zhong '14) The 3-colorability problem can be solved in polynomial time for P_{7}-free graphs.

- we can also solve the list 3-colorability problem
- each vertex is assigned a subset of $\{1,2,3\}$ of admissible colors (a so-called palette)
- our algorithm works in two phases

3-colorability in P_{7}-free graphs

Theorem (Bonomo, Chudnovsky, Maceli, S, Stein, Zhong '14) The 3-colorability problem can be solved in polynomial time for P_{7}-free graphs.

- we can also solve the list 3-colorability problem
- each vertex is assigned a subset of $\{1,2,3\}$ of admissible colors (a so-called palette)
- our algorithm works in two phases
- the goal is to reduce the number of admissible colors for each vertex from three to at most two

3-colorability in P_{7}-free graphs

Theorem (Bonomo, Chudnovsky, Maceli, S, Stein, Zhong '14)
The 3-colorability problem can be solved in polynomial time for P_{7}-free graphs.

- we can also solve the list 3-colorability problem
- each vertex is assigned a subset of $\{1,2,3\}$ of admissible colors (a so-called palette)
- our algorithm works in two phases
- the goal is to reduce the number of admissible colors for each vertex from three to at most two
- that leaves a 2-SAT problem, which can be solved efficiently

First phase

First phase

- compute a vertex subset of constant size whose second neighborhood is the whole graph [Camby and S. 2014]

First phase

- compute a vertex subset of constant size whose second neighborhood is the whole graph [Camby and S. 2014]
- enumerate all colorings of that vertex set, the so-called seed

First phase

- compute a vertex subset of constant size whose second neighborhood is the whole graph [Camby and S. 2014]
- enumerate all colorings of that vertex set, the so-called seed

First phase

First phase

- for all combinations of 'relevant' induced paths that start in the seed we enumerate the possible colorings

First phase

- for all combinations of 'relevant' induced paths that start in the seed we enumerate the possible colorings

First phase

- for all combinations of 'relevant' induced paths that start in the seed we enumerate the possible colorings

- this lets the seed grow, and the number of vertices that have only two colors left on their list

Second phase

Second phase

- after five iterations, we have $O\left(n^{20}\right)$ possible palettes

Second phase

- after five iterations, we have $O\left(n^{20}\right)$ possible palettes
- in each of them, the vertices with three colors on their list form an independent set

Second phase

- after five iterations, we have $O\left(n^{20}\right)$ possible palettes
- in each of them, the vertices with three colors on their list form an independent set

Second phase

- after five iterations, we have $O\left(n^{20}\right)$ possible palettes
- in each of them, the vertices with three colors on their list form an independent set

- after substituting each palette by $O\left(n^{10}\right)$ new ones, we can get rid of these vertices

Second phase

- after five iterations, we have $O\left(n^{20}\right)$ possible palettes
- in each of them, the vertices with three colors on their list form an independent set

- after substituting each palette by $O\left(n^{10}\right)$ new ones, we can get rid of these vertices
- then we solve the $O\left(n^{30}\right)$ 2-SAT problems

Obstructions against 3-colorability

Obstructions against 3-colorability

Obstructions against 3-colorability

Obstructions against 3-colorability

- 4-critical graph: needs four colors, but every proper subgraph is 3-colorable

Obstructions against 3-colorability

- 4-critical graph: needs four colors, but every proper subgraph is 3-colorable
- call such a graph an obstruction against 3-colorability

Obstructions against 3-colorability

- 4-critical graph: needs four colors, but every proper subgraph is 3-colorable
- call such a graph an obstruction against 3-colorability
- certifying coloring algorithm: output either a coloring or a small obstruction

Obstructions against 3-colorability

Obstructions against 3-colorability

Theorem (Randerath, Schiermeyer \& Tewes 2002)
The only obstruction in the class of $\left(P_{6}, K_{3}\right)$-free graphs is the Grötzsch graph.

Obstructions against 3-colorability

Theorem (Randerath, Schiermeyer \& Tewes 2002)
The only obstruction in the class of $\left(P_{6}, K_{3}\right)$-free graphs is the Grötzsch graph.

Obstructions against 3-colorability

Theorem (Randerath, Schiermeyer \& Tewes 2002)
The only obstruction in the class of $\left(P_{6}, K_{3}\right)$-free graphs is the Grötzsch graph.

Theorem (Bruce, Hòang \& Sawada 2009)
There are six obstructions in the class of P_{5}-free graphs.

Obstructions against 3-colorability

Obstructions against 3-colorability

- Golovach et al.: is there a certifying algorithm for 3-colorability on P_{6}-free graphs?

Obstructions against 3-colorability

- Golovach et al.: is there a certifying algorithm for 3-colorability on P_{6}-free graphs?
- Seymour: for which connected graphs H exist only finitely many obstructions in the class of H-free graphs?

Obstructions against 3-colorability

- Golovach et al.: is there a certifying algorithm for 3-colorability on P_{6}-free graphs?
- Seymour: for which connected graphs H exist only finitely many obstructions in the class of H-free graphs?

Theorem (Chudnovsky, Goedgebeur, S. \& Zhong 2015)
There are 24 obstructions in the class of P_{6}-free graphs.

Obstructions against 3-colorability

- Golovach et al.: is there a certifying algorithm for 3-colorability on P_{6}-free graphs?
- Seymour: for which connected graphs H exist only finitely many obstructions in the class of H-free graphs?

Theorem (Chudnovsky, Goedgebeur, S. \& Zhong 2015)
There are 24 obstructions in the class of P_{6}-free graphs.
Moreover, if H is connected and not a subgraph of P_{6}, there are infinitely many obstructions in the class of H -free graphs.

Tripods

Tripods

- given a graph with a triangle

Tripods

- given a graph with a triangle
- color that triangle with $\{1,2,3\}$, and then iteratively color all vertices that see two distinct colors

Tripods

- given a graph with a triangle
- color that triangle with $\{1,2,3\}$, and then iteratively color all vertices that see two distinct colors

Tripods

- given a graph with a triangle
- color that triangle with $\{1,2,3\}$, and then iteratively color all vertices that see two distinct colors

- the colored subgraph we call a maximal tripod

Structure of the proof

Structure of the proof

1. Prove that contracting a maximal tripod to a triangle is safe

Structure of the proof

1. Prove that contracting a maximal tripod to a triangle is safe

2. Prove the theorem for (P_{6}, diamond)-free graphs

- Use an automatic proof, building on a method of Hòang et al.
- Exhaustive enumeration, exploiting properties of minimally non-3-colorable graphs

Structure of the proof

Structure of the proof

3. Prove that by uncontracting a triangle to a maximal tripod one cannot get rid of the obstructions from the list

- Structural analysis by hand

Structure of the proof

3. Prove that by uncontracting a triangle to a maximal tripod one cannot get rid of the obstructions from the list

- Structural analysis by hand

4. Settle the exceptional case of uncontracting a triangle of K_{4}

- Use an automatic proof
- Enumeration algorithm mimicks how you'd traverse a tripod

Structure of the proof

3. Prove that by uncontracting a triangle to a maximal tripod one cannot get rid of the obstructions from the list

- Structural analysis by hand

4. Settle the exceptional case of uncontracting a triangle of K_{4}

- Use an automatic proof
- Enumeration algorithm mimicks how you'd traverse a tripod

Obstructions against 3-colorability

Obstructions against 3-colorability

- There is an infinite family of P_{7}-free obstructions

Obstructions against 3-colorability

- There is an infinite family of P_{7}-free obstructions

Obstructions against 3-colorability

- There is an infinite family of P_{7}-free obstructions

- Easy: infinte familes of claw-free obstructions, and obstructions of large girth

Obstructions against 3-colorability

- There is an infinite family of P_{7}-free obstructions

- Easy: infinte familes of claw-free obstructions, and obstructions of large girth
- If H is connected and not a subgraph of P_{6}, there are infinitely many obstructions in the class of H-free graphs

Open problems

Open problems

- Formulate a dichotomy theorem for general H

Open problems

- Formulate a dichotomy theorem for general H
- Is 3-colorability solvable in polytime on $P_{t^{-}}$-free graphs?

Open problems

- Formulate a dichotomy theorem for general H
- Is 3-colorability solvable in polytime on P_{t}-free graphs?
- Is 4-colorability solvable in polytime on P_{6}-free graphs?

Open problems

- Formulate a dichotomy theorem for general H
- Is 3-colorability solvable in polytime on P_{t}-free graphs?
- Is 4-colorability solvable in polytime on P_{6}-free graphs?
- Is k-colorability FPT in the class of P_{5}-free graphs?

Open problems

- Formulate a dichotomy theorem for general H
- Is 3-colorability solvable in polytime on P_{t}-free graphs?
- Is 4-colorability solvable in polytime on P_{6}-free graphs?
- Is k-colorability FPT in the class of P_{5}-free graphs?

Thanks!

