The Graph Bicycle Spectrum

Dr. Laura Sheppardson

University of Mississippi

May 26, 2015

REPUBLIKA SLOVENIJA
MINISTRSTVO ZA IZOBRAŽEVANJE, ZNANOST IN ŠPORT

A matroid M is an ordered pair (E, \mathcal{I}) where E is a finite set and \mathcal{I} is a collection of subsets of E satisfying the following three conditions:
(I1) $\emptyset \in \mathcal{I}$.
(I2) If $I \in \mathcal{I}$ and $I^{\prime} \subseteq I$, then $I^{\prime} \in \mathcal{I}$.
(I3) If $I_{1}, I_{2} \in \mathcal{I}$ and $\left|I_{1}\right|<\left|I_{2}\right|$, then there is an element e of $I_{2}-I_{1}$ such that $I_{1} \cup e \in \mathcal{I}$. (Exchange Property)
The members of \mathcal{I} are called the independent sets of M and E is called the ground set of M. Any subset of E that is not independent is called dependent.

A matrix example

$$
\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

Label the columns of this matrix with a, b, c, d, e, f. Interpreting independence in the standard way, we have a matroid on the ground set $\{a, b, c, d, e, f\}$

A matroid M can also be defined by its set of minimal dependent sets called circuits．The set of circuits of M is denoted by \mathcal{C} or $\mathcal{C}(M)$ ．
（C1）$\emptyset \notin \mathcal{C}$ ．
（C2）If $C_{1}, C_{2} \in \mathcal{C}$ and $C_{1} \subseteq C_{2}$ ，then $C_{1}=C_{2}$ ．
（C3）If C_{1} and C_{2} are distinct members of \mathcal{C} and
$e \in C_{1} \cap C_{2}$ ，then there is some $C_{3} \in \mathcal{C}$ such that $C_{3} \subseteq\left(C_{1} \cup C_{2}\right)-e$ ．（Circuit Elimination Axiom）

A graphic example

Given a graph (V, E), we define the cycle matroid $M(G)$:

- The ground set of $M(G)$ is E.
- $C \subseteq E$ is a circuit of $M(G)$ if and only if C is a cycle in G.

A matroid which can be realized as the cycle matroid of some graph is called graphic.

Dual Matroids

A maximal independent set of a matroid M is called a basis of M ． A matroid is well defined by specifying its bases， $\mathcal{B}(M)$ ． Let M be a matroid on ground set E ．Then the dual matroid of M ， denoted M^{*} ，is the matroid on E with bases $\{E-B: B \in \mathcal{B}(M)\}$ ．

Duals of graphic matroids

Theorem (Tutte)
If $M=M(G)$ is a graphic matroid, then M^{*} is graphic if and only if G is planar.

If M is the matroid of a planar graph G , then M^{*} is the matroid of the planar dual G^{*}.

$$
M^{*}(G)=M\left(G^{*}\right)
$$

Matroid M	Dual matroid M^{*}
basis B	basis complement $E-B^{\prime}$
circuit	cocircuit (bond)
basis complement $E-B$	basis B^{\prime}
cocircuit (bond)	circuit
hyperplane H	circuit complement $E-C^{\prime}$
hyperplane comp. $E-H$	circuit C^{\prime}
A hyperplane is a maximal non-spanning set. The	
circuits of M^{*} are the hyperplane complements of M.	

Designs

A balanced incomplete block design $B(v, b, r, k, \lambda)$ is a pair (X, \mathcal{B}) such that

- $|X|=v,|B|=b$
- $\forall B \in \mathcal{B}, B \subseteq X$ and $|B|=k$
- $\forall x \in X,|\{B \in \mathcal{B}: x \in B\}|=r$
- $\forall x, y \in X,|\{B \in \mathcal{B}:\{x, y\} \subseteq B\}|=\lambda$

Designs

A balanced incomplete block design $B(v, b, r, k, \lambda)$ is a pair (X, \mathcal{B}) such that

- $|X|=v,|B|=b$
- $\forall B \in \mathcal{B}, B \subseteq X$ and $|B|=k$
- $\forall x \in X,|\{B \in \mathcal{B}: x \in B\}|=r$
- $\forall x, y \in X,|\{B \in \mathcal{B}:\{x, y\} \subseteq B\}|=\lambda$

Example:
The Fano Plane is a $(9,7,3,3,1)$ balanced incomplete block design. It is also a (geometric) matroid.

Designs

For integer $t>1$, a t -design $t-(v, k, \lambda)$ is is a pair (X, \mathcal{B}) such that

- $|X|=v$
- $\forall B \in \mathcal{B}, B \subseteq X$ and $|B|=k$
- $\forall Y \subseteq X$ with $|Y|=t,|\{B \in \mathcal{B}: Y \subseteq B\}|=\lambda$

Designs

A matroid design (or equicardinal matroid) is a matroid whose hyperplanes all have the same size.
A perfect matroid design (PMD) is a matroid whose flats of each specific rank all have the same size.

The flats, or the circuits, or the independent sets of a PMD form a t-design (Young \& Edmonds, early 1970s)

Matroid M	Dual matroid M^{*}
basis B	basis complement $E-B^{\prime}$
circuit	cocircuit（bond）
basis complement $E-B$	basis B^{\prime}
cocircuit（bond）	circuit
hyperplane H	circuit complement $E-C^{\prime}$
hyperplane comp．$E-H$	circuit C^{\prime}

Circuit spectrum

The circuit spectrum of a matroid M is

$$
\operatorname{spec}(M)=\{|C|: C \in \mathcal{C}(M)\}
$$

Analagous to the well-studied cycle spectrum of a graph,

$$
\operatorname{spec}(G)=\{|C|: C \in \mathcal{C}(G)\}
$$

where $\mathcal{C}(G)$ is the collection of all cycles in graph G.

Subdivisions

－A subdivision of a matroid is obtained by replacing each element by a series class．
－In a graphic matroid，this corresponds to replacing each graph edge by a path．

Subdivisions

－A subdivision of a matroid is obtained by replacing each element by a series class．
－In a graphic matroid，this corresponds to replacing each graph edge by a path．
－A k－subdivision is obtained by replacing each element by a series class of size k ．
－In a graphic matroid，this corresponds to replacing each edge by a path of length k ．

Small spectrum binary matroids

A matroid is binary provided it can be represented by (the columns of) a matrix with binary entries. Every graphic matroid is binary.
Theorem (Murty, 1971)
Let M be a connected binary matroid. For $\eta \in \mathbb{Z}^{+}, \operatorname{spec}(M)=\{\eta\}$ if and only if M is isomorphic to one of the following matroids.
(i) an η-subdivision of $U_{0,1}$
(ii) a k-subdivision of $U_{1, n}$, where $\eta=2 k$ and $n \geq 3$
(iii) an l-subdivision of $P G(r, 2)^{*}$, where $\eta=2^{r}$ I and $r \geq 2$
(iv) an I-subdivision of $A G(r+1,2)^{*}$, where $\eta=2^{r}$ I and $r \geq 2$

Small spectrum binary matroids

Theorem（Lemos，Reid，Wu 2011）
Let M be a 3－connected binary matroid with largest circuit size odd．Then $|\operatorname{spec}(M)| \leq 2$ if and only if M is isomorphic to one of the following matroids．
（i）$U_{0,1}$ or $U_{2,3}$
（ii）$S_{2 n}^{*}$ for some $n \geq 2$
（iii）$B(r, 2)^{*}$ for some $r \geq 2$

Bicircular matroids

The bicircular matroid of graph $G=(V, E)$, denoted by $B(G)$

Bicircular matroids

The bicircular matroid of graph $G=(V, E)$, denoted by $B(G)$ ground set: E
circuits: edge sets of subdivisions of any of the following

Bicircular matroids

The bicircular matroid of graph $G=(V, E)$ ，denoted by $B(G)$ ground set：E
circuits：edge sets of subdivisions of any of the following
Bowtie，or tight handcuff

Barbell，or loose handcuff

Theta

Bicircular matroids

The bicircular matroid of graph $G=(V, E)$ ，denoted by $B(G)$ ground set：E
circuits：edge sets of subdivisions of any of the following
Bowtie，or tight handcuff

Barbell，or loose handcuff

Theta

A bicycle is a connected subgraph containing exactly two cycles and no leaves．

A bicircular example

ground set: $E=\{a, b, c, d, e, f, g, h, i\}$
circuits: $\{a, b, d, e, f, g, h, i\}=E-\{c\}$
$\{a, b, c, d, f, g, h, i\}=E-\{e\}$
$\{a, b, c, d, e, g, h, i\}=E-\{f\}$
$\{c, d, e, f, g, h, i\}=E-\{a, b\}$
$\{a, b, c, e, f\}=E-\{d, g, h, i\}$

Operations which preserve isomorphism of $B(M)$

(Coullard, del Greco, and Wagner 1991)

Small spectrum bicircular matroids

Bicircular matroid are generally not binary.

Small spectrum bicircular matroids

Bicircular matroid are generally not binary.
Theorem (Lewis, McNulty, Neudauer, Reid, S 2013)
Let M be a connected bicircular matroid. For $\eta \geq 2$, $\operatorname{spec}(M)=\{\eta\}$ if and only if M is isomorphic to one of the following matroids:
(i) a k-subdivision of $U_{1, n}$ where $\eta=2 k$ and $n \geq 2$,
(ii) a k-subdivision of $U_{2, n}$ where $\eta=3 k$ and $n \geq 3$,
(iii) a k-subdivision of $U_{3,5}$ or $U_{3,6}$ where $\eta=4 k$,
(iv) a k-subdivision of $U_{4,6}$ where $\eta=5 k$.

Small bicycle spectrum: $\operatorname{spec}(M)=\{\eta\}$

$U_{4,6}$

$U_{4,6}$

Small bicycle spectrum: $|\operatorname{spec}(M)|=2$

Theorem (Lewis, Reid, S)
Let $M=B(G)$ be a connected bicircular matroid where G is a subdivision of a 3-connected graph H. Then $|\operatorname{spec}(M)|=2$ if and only if H is one of the following graphs.
(i) An (a, b)-subdivision of W_{3} for distinct positive integers a, b.
(ii) A k-subdivision of $W_{4}, K_{5} \backslash e, K_{5}, K_{3,3}, K_{3,4}$, or the prism P_{6} for some $k \in \mathbb{Z}^{+}$.
If H is isomorphic to $W_{4}, K_{5} \backslash e$, or $K_{5}, \operatorname{spec}(M)=\{5 k, 6 k\}$.
If H is isomorphic to $K_{3,3}, K_{3,4}$, or $P_{6}, \operatorname{spec}(M)=\{6 k, 7 k\}$.

Small bicycle spectrum: $|\operatorname{spec}(M)|=2$

How does 3-connectivity matter?

Small bicycle spectrum：$|\operatorname{spec}(M)|=2$

Theorem（Dirac 1963）
A graph G is a subdivision of a simple 3－connected graph without two vertex－disjoint cycles if and only if G is a subdivision of one of the following graphs：a wheel graph，$K_{5}, K_{5} \backslash e, K_{3, p}, K_{3, p}^{\prime}, K_{3, p}^{\prime \prime}$ ，or $K_{3, p}^{\prime \prime \prime}$ for some $p \geq 3$ ．

Small bicycle spectrum: $|\operatorname{spec}(M)|=2$

Theorem (Dirac 1963)

A graph G is a subdivision of a simple 3-connected graph without two vertex-disjoint cycles if and only if G is a subdivision of one of the following graphs: a wheel graph, $K_{5}, K_{5} \backslash e, K_{3, p}, K_{3, p}^{\prime}, K_{3, p}^{\prime \prime}$, or $K_{3, p}^{\prime \prime \prime}$ for some $p \geq 3$.

Two disjoint cycles ...

Small bicycle spectrum: $|\operatorname{spec}(M)|=2$

Theorem (Dirac 1963)
A graph G is a subdivision of a simple 3-connected graph without two vertex-disjoint cycles if and only if G is a subdivision of one of the following graphs: a wheel graph, $K_{5}, K_{5} \backslash e, K_{3, p}, K_{3, p}^{\prime}, K_{3, p}^{\prime \prime}$, or $K_{3, p}^{\prime \prime \prime}$ for some $p \geq 3$.

Two disjoint cycles ...3-connected

Small bicycle spectrum: $|\operatorname{spec}(M)|=2$

Theorem (Putnam, S)
Let $M=B(G)$ be a connected bicircular matroid where G is not the subdivision of a 3-connected graph. Then $|\operatorname{spec}(M)|=2$ if and only if G is a restricted subdivision of one of the following graphs:
(i) A cycle with two or three balloons.
(ii) A theta with a balloon.
(iii) A theta barbell.
(iv) Two equally balanced thetas joined by two paths with the same endpoints.
(v) A theta barbell with a single balloon attached at either the center of the subdivided edge or at the branch point of a balanced theta.

Small bicycle spectrum: $|\operatorname{spec}(M)|=3$

Theorem (Putnam, S)
Let $M=B(G)$ be a connected bicircular matroid where G is a subdivision of a 3-connected graph H. Then $|\operatorname{spec}(M)|=3$ if and only if G is one of the following graphs.

Small bicycle spectrum: $|\operatorname{spec}(M)|=3$

Theorem (Putnam, S)

Let $M=B(G)$ be a connected bicircular matroid where G is a subdivision of a 3 -connected graph H. Then $|\operatorname{spec}(M)|=3$ if and only if G is one of the following graphs.
(i) $A n(\alpha, \beta, \gamma)$-subdivision of W_{3}
(ii) An α-subdivision of W_{5} or $K_{3, p}$ for $p \geq 4$
(iii) $A(\beta, 2 \beta)$-subdivision of K_{5} or $K_{5} \backslash e$, with a matching being 2β subdivided
(iv) $A(\beta, 2 \beta)$-subdivision of $K_{3,3}$ with exactly a single edge, a perfect matching, or a 4 -cycle being 2β subdivided
(v) $A(\beta, 2 \beta)$-subdivision of P_{6} with exactly a matching or a 3-cycle being 2β subdivided
(vi) A restricted $(\beta, 2 \beta)$-subdivision of W_{4}

Large spectrum bicircular matroids

Which graphs have bicycles of many sizes?

Large spectrum bicircular matroids

Which graphs have bicycles of many sizes?

$K_{l, m}$ with $m \geq I \geq 2$ and $m \geq 3$ has bicycles of sizes

Large spectrum bicircular matroids

Which graphs have bicycles of many sizes?

$K_{l, m}$ with $m \geq I \geq 2$ and $m \geq 3$ has bicycles of sizes 6

Large spectrum bicircular matroids

Which graphs have bicycles of many sizes?

$K_{l, m}$ with $m \geq I \geq 2$ and $m \geq 3$ has bicycles of sizes 6,7

O
0

0

Large spectrum bicircular matroids

Which graphs have bicycles of many sizes?

$K_{l, m}$ with $m \geq I \geq 2$ and $m \geq 3$ has bicycles of sizes $6,7,8, \ldots$

0

Large spectrum bicircular matroids

Which graphs have bicycles of many sizes?

$K_{l, m}$ with $m \geq I \geq 2$ and $m \geq 3$ has bicycles of sizes $6,7,8, \ldots 2 l+2$

Consecutive cycle lengths

A question of Erdös, settled by Bondy and Vince (1998): Every graph with minimum degree at least three contains two cycles whose lengths differ by one or two.

Consecutive cycle lengths

A question of Erdös, settled by Bondy and Vince (1998):
Every graph with minimum degree at least three contains two cycles whose lengths differ by one or two.
Theorem (Fan 2001)
Let $x y$ be an edge in a 2-connected graph G. for an positive integer k, if every vertex other than x and y has degree at least $3 k$, then xy is contained in $k+1$ cycles $C_{0}, C_{1}, \ldots C_{k}$ such that $k+1<\left|E\left(C_{0}\right)\right|<\left|E\left(C_{1}\right)\right|<\cdots<\left|E\left(C_{k}\right)\right|$,
$\left|E\left(C_{i}\right)\right|-\left|E\left(C_{i-1}\right)\right|=2,1 \leq i \leq k-1$, and
$1 \leq\left|E\left(C_{k}\right)\right|-\mid E\left(C_{k-1} \mid \leq 2\right.$.

Using strings of cycles

A string of 2-defective cycles

Bicycles of consecutive sizes：strings of cycles

Adjusting this proof for bicycles，we get ．．．

Theorem（Putnam，S，Wu）
If G is a 2－connected graph with minimum degree at least $3 k$ and G contains a non－separating induced odd cycle，then G contains $2(k-1)$ bicycles of consecutive sizes．

Bicycles of consecutive sizes: strings of cycles

Adjusting this proof for bicycles, we get ...

Theorem (Putnam, S, Wu)
If G is a 2-connected graph with minimum degree at least $3 k$ and
G contains a non-separating induced odd cycle, then G contains $2(k-1)$ bicycles of consecutive sizes.

Theorem (Putnam, S, Wu)
Let x and y be two distinct vertices in a 2-connected graph G. If every vertex other than x and y has minimum degree at least $3 k$, with $k \geq 2$, then G has $k-1$ bicycles, $\left|E\left(C_{1}\right)\right|<\left|E\left(C_{2}\right)\right|<\cdots<\left|E\left(C_{k-1}\right)\right|,\left|E\left(C_{i}\right)\right|-\left|E\left(C_{i-1}\right)\right| \leq 2$.

Bicycles of consecutive sizes

This is far from best possible．
Induced odd cycle produces all thetas，no barbells／handcuffs．
Produces multiple intervals of consecutive bicycle sizes，but no control on the gaps between intervals．

Bicycles of consecutive sizes：spanning trees

Adding any two edges to a spanning tree induces a bicycle．

Bicycles of consecutive sizes：spanning trees

Adding any two edges to a spanning tree induces a bicycle．

Bicycles of consecutive sizes: spanning trees

Adding any two edges to a spanning tree induces a bicycle.

If the longest path in a graph has length
p, then the largest bicycle has size
$p+2$.

Bicycles of consecutive sizes

Girth g, longest path length $p \Longrightarrow \frac{3}{2} g \leq\left|E\left(C_{1}\right)\right| \leq p+2$

Bicycles of consecutive sizes

Girth g, longest path length $p \Longrightarrow \frac{3}{2} g \leq\left|E\left(C_{1}\right)\right| \leq p+2$
Under what conditions will we have bicycles of all possible sizes?

Bicycles of consecutive sizes

Theorem
If G has a Hamilton path and minimum degree $k \geq 3$ then G has bicycles of k consecutive sizes, $n-k+3 \leq|C| \leq n+2$.

Bicycles of consecutive sizes

Theorem
If G has a Hamilton path and minimum degree $k \geq 3$ then G has bicycles of k consecutive sizes, $n-k+3 \leq|C| \leq n+2$.

Almost there
If G has minimum degree $k \geq 3$ and a maximal path of length p, then G has bicycles of $k-1$ consecutive sizes, $p-k+3 \leq|C| \leq p+2$.

Utilizing a spanning tree

Choose a rooted depth-first-search spanning tree T rooted at one end v_{0} of a maximal path $P=v_{0}, v_{1}, \ldots v_{p}$.

Utilizing a spanning tree

Choose a rooted depth－first－search spanning tree T rooted at one end v_{0} of a maximal path $P=v_{0}, v_{1}, \ldots v_{p}$ ． The neighbors（in G ）of any vertex v lie on the path from v to v_{0} in T ．

Utilizing a spanning tree

Choose a rooted depth-first-search spanning tree T rooted at one end v_{0} of a maximal path $P=v_{0}, v_{1}, \ldots v_{p}$.
The neighbors (in G) of any vertex v lie on the path from v to v_{0} in T.

Utilizing a spanning tree

Utilizing a spanning tree

u_{m} has no consecutive neighbors v_{i} and v_{i+1}

Utilizing a spanning tree

u_{m} has no consecutive neighbors v_{i} and v_{i+1}
Minimum degree $k \geq 3 \Longrightarrow I \geq 2 k$

Utilizing a spanning tree

Can we expect all bicycle sizes this way?
\qquad

Utilizing a spanning tree

Can we expect all bicycle sizes this way?

The Haewood graph has a full spectrum: $\{9,10,11,12,13,14,15\}$

Utilizing a spanning tree

Can we expect all bicycle sizes this way?

The Haewood graph has a full spectrum: $\{9,10,11,12,13,14,15\}$

Bicycles of length 10 require a different structure.

Some special matroids

The Uniform Matroid $U_{r, n}=(E, \mathcal{I})$ has $|E|=n$ and $\mathcal{I}=\{S \subseteq E:|S| \leq r\}$.
$P G(r, 2)$ is the binary projective geometry of rank $r+1$.
$A G(r, 2)$ is the affine geometry of rank $r+1$.
A matroid is binary provided it can be represented by (the columns of) a matrix with binary entries.
Every graphic matroid is binary. Bicircular matriods are generally not binary.

