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A matroid M is an ordered pair (E,Z) where E is a finite set and
T is a collection of subsets of E satisfying the following three
conditions:

(1) ez
(I2) If I €Z and I C I, then I’ € T.

(I3) If h,h € Z and |l| < |k, then there is an element e of
I, — I such that h Ue € Z. (Exchange Property)

The members of 7 are called the independent sets of M and E is
called the ground set of M. Any subset of E that is not
independent is called dependent.



A matrix example

1 00011
010011
0010601
000100

Label the columns of this matrix with a, b, c,d, e, f.
Interpreting independence in the standard way, we have a matroid
on the ground set {a, b, c,d, e, f}



A matroid M can also be defined by its set of minimal dependent
sets called circuits. The set of circuits of M is denoted by C or
C(M).

(C1) 0 ¢cC.
(C2) If G;,G eCand G C G, then G = Go.
)

(C3) If Gi and G, are distinct members of C and
e € C1 N Gy, then there is some C3 € C such that
G C (G U Q) — e. (Circuit Elimination Axiom)



A graphic example

Given a graph (V, E), we define the cycle matroid M(G):
» The ground set of M(G) is E.
» C C E is a circuit of M(G) if and only if C is a cycle in G.

A matroid which can be realized as the cycle matroid of some
graph is called graphic.



Dual Matroids

A maximal independent set of a matroid M is called a basis of M.
A matroid is well defined by specifying its bases, B(M).

Let M be a matroid on ground set E. Then the dual matroid of M,
denoted M*, is the matroid on E with bases {E — B : B € B(M)}.



Duals of graphic matroids

Theorem (Tutte)

If M = M(G) is a graphic matroid, then M* is graphic if and only
if G is planar.

If M is the matroid of a planar graph G, then M* is the matroid of
the planar dual G*.



Matroid M

Dual matroid M*

basis B

basis complement £ — B
circuit

cocircuit (bond)
hyperplane H

hyperplane comp. E — H

basis complement E — B’
basis B’

cocircuit (bond)

circuit

circuit complement E — C’

circuit C’

A hyperplane is a maximal non-spanning set. The
circuits of M* are the hyperplane complements of M.



Designs

A balanced incomplete block design B(v, b, r, k,\) is a pair (X, B)
such that

» | X|=v,|Bl=b

» VBeB,BC X and |B| =k

» Vxe X,{BeB:xeB}|=r

» Vx,y e X,{BeB:{x,y} C B} =\



Designs

A balanced incomplete block design B(v, b, r, k,\) is a pair (X, B)
such that

» | X|=v,|Bl=b

» VBeB,BC X and |B| =k

» Vxe X,{BeB:xeB}|=r

» Vx,y e X,{BeB:{x,y} C B} =\

Example:
The Fano Planeis a (9,7,3,3,1) balanced incomplete block design.
It is also a (geometric) matroid.



Designs

For integer t > 1, a t-design t-(v, k, A) is is a pair (X, B) such that

> ‘X‘:V
» VB € B,BC X and |B| =k
» VY C X with |Y|=t,{BeB:YCB} =\



Designs

A matroid design (or equicardinal matroid) is a matroid whose
hyperplanes all have the same size.

A perfect matroid design (PMD) is a matroid whose flats of each
specific rank all have the same size.

The flats, or the circuits, or the independent sets of a PMD form a
t-design (Young & Edmonds, early 1970s)



Matroid M

Dual matroid M*

basis B

basis complement E — B
circuit

cocircuit (bond)
hyperplane H

hyperplane comp. E — H

basis complement E — B’
basis B’

cocircuit (bond)

circuit

circuit complement E — C’

circuit C’



Circuit spectrum

The circuit spectrum of a matroid M is
spec(M) = {|C|: C e C(M)}
Analagous to the well-studied cycle spectrum of a graph,
spec(G) = {|C|: C € C(G)}

where C(G) is the collection of all cycles in graph G.



Subdivisions

» A subdivision of a matroid is obtained by replacing each
element by a series class.

» In a graphic matroid, this corresponds to replacing each graph
edge by a path.



Subdivisions

v

A subdivision of a matroid is obtained by replacing each
element by a series class.

» In a graphic matroid, this corresponds to replacing each graph
edge by a path.

» A k-subdivision is obtained by replacing each element by a
series class of size k.

> In a graphic matroid, this corresponds to replacing each edge
by a path of length k.



Small spectrum binary matroids

A matroid is binary provided it can be represented by (the columns
of) a matrix with binary entries. Every graphic matroid is binary.
Theorem (Murty, 1971)

Let M be a connected binary matroid. Forn € Z*, spec(M) = {n}
if and only if M is isomorphic to one of the following matroids.

(i) an n-subdivision of Up 1

(ii) a k-subdivision of Uy, where n =2k and n >3

(i) an I-subdivision of PG(r,2)*, where n =2"| and r > 2
(iv) an I-subdivision of AG(r + 1,2)*, where n = 2"l and r > 2



Small spectrum binary matroids

Theorem (Lemos, Reid, Wu 2011)

Let M be a 3-connected binary matroid with largest circuit size

odd. Then |spec(M)| < 2 if and only if M is isomorphic to one of
the following matroids.

(i) Uoa or Uz
(i) S3, for some n > 2
(iii) B(r,2)* for some r > 2



Bicircular matroids
The bicircular matroid of graph G = (V, E), denoted by B(G)
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Bicircular matroids
The bicircular matroid of graph G = (V, E), denoted by B(G)

ground set: E
circuits: edge sets of subdivisions of any of the following
Bowtie, or tight handcuff

C D

Barbell, or loose handcuff

Co—C

Theta

A bicycle is a connected subgraph containing exactly two
cycles and no leaves.



A bicircular example

ground set: E ={a, b,c,d,e,f,g, h, i}
circuits: {a,b,d,e, f,g,h,i} = E —{c}
{a,b,c,d,f,g,hi} = E—{e}
{a,b,c,d,e, g, h,i} = E—{f}
{c,d,e,f,g, hi} =E—{a, b}
{a,b,c,e,f} =E—{d,g,h,i}



Operations which preserve isomorphism of B(M)

(Coullard, del Greco, and Wagner 1991)

roII
unroII



Small spectrum bicircular matroids

Bicircular matroid are generally not binary.



Small spectrum bicircular matroids

Bicircular matroid are generally not binary.

Theorem (Lewis, McNulty, Neudauer, Reid, S 2013)

Let M be a connected bicircular matroid. Formn > 2,
spec(M) = {n} if and only if M is isomorphic to one of the
following matroids:

(i) a k-subdivision of Uy , where n = 2k and n > 2,
(ii

) a k-subdivision of U, , where n = 3k and n > 3,
(iii) a k-subdivision of Uz 5 or U3 g where n = 4k,
)

(iv) a k-subdivision of Us s where n = 5k.



Small bicycle spectrum: spec(M) = {n}

LB

Us,n Uzn Uss Use

G

U476 U4,6



Small bicycle spectrum: |spec(M)| = 2

Theorem (Lewis, Reid, S)
Let M = B(G) be a connected bicircular matroid where G is a
subdivision of a 3-connected graph H. Then |spec(M)| = 2 if and
only if H is one of the following graphs.
(i) An (a, b)-subdivision of Wj for distinct positive integers a, b.
(i) A k-subdivision of Wa, Ks\e, Ks, K33, K34, or the prism Peg
for some k € Z*.
If H is isomorphic to Wy, Ks\e, or Ks, spec(M) = {5k, 6k}.
If H is isomorphic to K33, K34, or Ps, spec(M) = {6k, 7k}.



Small bicycle spectrum: |spec(M)| = 2

How does 3-connectivity matter?



Small bicycle spectrum: |spec(M)| = 2

Theorem (Dirac 1963)

A graph G is a subdivision of a simple 3-connected graph without
two vertex-disjoint cycles if and only if G is a subdivision of one of
the following graphs: a wheel graph, Ks, Ks\e, K3 p, Ké’p, K

3,p OF
Ké”p for some p > 3.



Small bicycle spectrum: |spec(M)| = 2

Theorem (Dirac 1963)

A graph G is a subdivision of a simple 3-connected graph without

two vertex-disjoint cycles if and only if G is a subdivision of one of
the following graphs: a wheel graph, Ks, Ks\e, K3 p, Ké’p, Ké’,p' or
K3, for some p > 3.

Two disjoint cycles . ..

Co—C D



Small bicycle spectrum: |spec(M)| = 2

Theorem (Dirac 1963)

A graph G is a subdivision of a simple 3-connected graph without

two vertex-disjoint cycles if and only if G is a subdivision of one of
the following graphs: a wheel graph, Ks, Ks\e, K3 p, Ké,p' Kéfp, or
Ké”’p for some p > 3.

Two disjoint cycles ... 3-connected

Co>—C D




Small bicycle spectrum: |spec(M)| = 2

Theorem (Putnam, S)

Let M = B(G) be a connected bicircular matroid where G is not
the subdivision of a 3-connected graph. Then |spec(M)| = 2 if and
only if G is a restricted subdivision of one of the following graphs:

(i) A cycle with two or three balloons.
(i) A theta with a balloon.
(iii) A theta barbell.
(iv)

Two equally balanced thetas joined by two paths with the
same endpoints.

(v) A theta barbell with a single balloon attached at either the
center of the subdivided edge or at the branch point of a
balanced theta.



Small bicycle spectrum: |spec(M)| =3

Theorem (Putnam, S)

Let M = B(G) be a connected bicircular matroid where G is a
subdivision of a 3-connected graph H. Then |spec(M)| = 3 if and
only if G is one of the following graphs.



Small bicycle spectrum: |spec(M)| =3

Theorem (Putnam, S)

Let M = B(G) be a connected bicircular matroid where G is a
subdivision of a 3-connected graph H. Then |spec(M)| = 3 if and
only if G is one of the following graphs.

(i) An (a, B,7)-subdivision of W3
(ii) An a-subdivision of Ws or K3, for p > 4

(i) A (B,28)-subdivision of K5 or Ks \ e, with a matching being
203 subdivided

(iv) A (B,2B)-subdivision of K33 with exactly a single edge, a
perfect matching, or a 4-cycle being 23 subdivided

(v) A (8,28)-subdivision of Ps with exactly a matching or a
3-cycle being 23 subdivided

(vi) A restricted (3, 2[3)-subdivision of W,



Large spectrum bicircular matroids

Which graphs have bicycles of many sizes?
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Large spectrum bicircular matroids

Which graphs have bicycles of many sizes?

Kim with m>12>2and m > 3 has
bicycles of sizes 6, 7, 8, ...2/ 42



Consecutive cycle lengths

A question of Erdos, settled by Bondy and Vince (1998):
Every graph with minimum degree at least three contains two
cycles whose lengths differ by one or two.



Consecutive cycle lengths

A question of Erdos, settled by Bondy and Vince (1998):
Every graph with minimum degree at least three contains two
cycles whose lengths differ by one or two.

Theorem (Fan 2001)

Let xy be an edge in a 2-connected graph G. for an positive
integer k, if every vertex other than x and y has degree at least
3k, then xy is contained in k + 1 cycles Cy, Cy, ... Cy such that
k+1<|E(G)| <I|E(G)] < <|E(CK),

‘E(C,)’ - |E(C,'_1)‘ = 2, 1 < ] < k — 1, and

1< |E(C)| — |E(Geal < 2.




Using strings of cycles

A string of 2-defective cycles



Bicycles of consecutive sizes: strings of cycles

Adjusting this proof for bicycles, we get ...

Theorem (Putnam, S, Wu)

If G is a 2-connected graph with minimum degree at least 3k and
G contains a non-separating induced odd cycle, then G contains
2(k — 1) bicycles of consecutive sizes.



Bicycles of consecutive sizes: strings of cycles

Adjusting this proof for bicycles, we get ...

Theorem (Putnam, S, Wu)

If G is a 2-connected graph with minimum degree at least 3k and
G contains a non-separating induced odd cycle, then G contains
2(k — 1) bicycles of consecutive sizes.

Theorem (Putnam, S, Wu)

Let x and y be two distinct vertices in a 2-connected graph G. If
every vertex other than x and y has minimum degree at least
3k,with k > 2, then G has k — 1 bicycles,

E(C)] < [E(G)| < - < |E(Cima)l, |E(G)I = |E(Ci)] < 2.




Bicycles of consecutive sizes

This is far from best possible.
Induced odd cycle produces all thetas, no barbells/handcuffs.

Produces multiple intervals of consecutive bicycle sizes, but no
control on the gaps between intervals.



Bicycles of consecutive sizes: spanning trees

Adding any two edges to a spanning
tree induces a bicycle.
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Bicycles of consecutive sizes: spanning trees

Adding any two edges to a spanning
tree induces a bicycle.

If the longest path in a graph has length
p, then the largest bicycle has size
p+2.



Bicycles of consecutive sizes

Girth g, longest path length p —> %g <|E(G)|<p+2



Bicycles of consecutive sizes

Girth g, longest path length p = 3g < |E(C1)| < p+2

Under what conditions will we have bicycles of all possible sizes?



Bicycles of consecutive sizes

Theorem
If G has a Hamilton path and minimum degree k > 3 then G has
bicycles of k consecutive sizes, n — k +3 < |C| < n+ 2.



Bicycles of consecutive sizes

Theorem

If G has a Hamilton path and minimum degree k > 3 then G has
bicycles of k consecutive sizes, n — k +3 < |C| < n+ 2.

Almost there

If G has minimum degree k > 3 and a maximal path of length p,
then G has bicycles of k — 1 consecutive sizes,
p—k+3<|CI<p+2



Utilizing a spanning tree

Choose a rooted depth-first-search spanning tree T rooted at one
end vp of a maximal path P = vg, v1,... v,.
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Utilizing a spanning tree

Choose a rooted depth-first-search spanning tree T rooted at one
end vp of a maximal path P = vg, v1,... v,.

The neighbors (in G) of any vertex v lie on the path from v to vy
in T.

e



Utilizing a spanning tree

Vo

Vi Vertex un, is distance m from the path
at branch v; , with neighbor v;
v m<i<l—m
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Utilizing a spanning tree

Vo

Vi Vertex un, is distance m from the path
at branch v; , with neighbor v;
v m<i<l—m
Um

um has no consecutive neighbors v; and vj;1

Minimum degree k > 3 = [ > 2k
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Can we expect all bicycle sizes this way?
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Utilizing a spanning tree

Can we expect all bicycle sizes this way?

The Haewood graph has a full spectrum:
/< {9,10,11,12,13,14,15}

q S~ »

- o

Bicycles of length 10 require a different structure.






Some special matroids

The Uniform Matroid U, , = (E,Z) has |E| = n and
I={SCE:|S|<r}.

PG(r,2) is the binary projective geometry of rank r + 1.

AG(r,2) is the affine geometry of rank r + 1.

A matroid is binary provided it can be represented by (the columns
of) a matrix with binary entries.

Every graphic matroid is binary. Bicircular matriods are generally
not binary.



