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A matroid M is an ordered pair (E , I) where E is a finite set and
I is a collection of subsets of E satisfying the following three
conditions:

(I1) ∅ ∈ I.

(I2) If I ∈ I and I ′ ⊆ I , then I ′ ∈ I.

(I3) If I1, I2 ∈ I and |I1| < |I2|, then there is an element e of
I2 − I1 such that I1 ∪ e ∈ I. (Exchange Property)

The members of I are called the independent sets of M and E is
called the ground set of M. Any subset of E that is not
independent is called dependent.



A matrix example


1 0 0 0 1 1
0 1 0 0 1 1
0 0 1 0 0 1
0 0 0 1 0 0


Label the columns of this matrix with a, b, c , d , e, f .
Interpreting independence in the standard way, we have a matroid
on the ground set {a, b, c , d , e, f }



A matroid M can also be defined by its set of minimal dependent
sets called circuits. The set of circuits of M is denoted by C or
C(M).

(C1) ∅ /∈ C.

(C2) If C1,C2 ∈ C and C1 ⊆ C2, then C1 = C2.

(C3) If C1 and C2 are distinct members of C and
e ∈ C1 ∩ C2, then there is some C3 ∈ C such that
C3 ⊆ (C1 ∪ C2)− e. (Circuit Elimination Axiom)



A graphic example

Given a graph (V ,E ), we define the cycle matroid M(G ):

I The ground set of M(G ) is E .

I C ⊆ E is a circuit of M(G ) if and only if C is a cycle in G .

A matroid which can be realized as the cycle matroid of some
graph is called graphic.



Dual Matroids

A maximal independent set of a matroid M is called a basis of M.
A matroid is well defined by specifying its bases, B(M).
Let M be a matroid on ground set E . Then the dual matroid of M,
denoted M∗, is the matroid on E with bases {E − B : B ∈ B(M)}.



Duals of graphic matroids

Theorem (Tutte)

If M = M(G ) is a graphic matroid, then M∗ is graphic if and only
if G is planar.

If M is the matroid of a planar graph G, then M∗ is the matroid of
the planar dual G ∗.

M∗(G ) = M(G ∗)



Matroid M Dual matroid M∗

basis B basis complement E − B ′

basis complement E − B basis B ′

circuit cocircuit (bond)

cocircuit (bond) circuit

hyperplane H circuit complement E − C ′

hyperplane comp. E − H circuit C ′

A hyperplane is a maximal non-spanning set. The
circuits of M∗ are the hyperplane complements of M.



Designs

A balanced incomplete block design B(v , b, r , k , λ) is a pair (X ,B)
such that

I |X | = v , |B| = b

I ∀B ∈ B,B ⊆ X and |B| = k

I ∀x ∈ X , |{B ∈ B : x ∈ B}| = r

I ∀x , y ∈ X , |{B ∈ B : {x , y} ⊆ B}| = λ

Example:
The Fano Plane is a (9, 7, 3, 3, 1) balanced incomplete block design.
It is also a (geometric) matroid.
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Designs

For integer t > 1, a t-design t-(v , k , λ) is is a pair (X ,B) such that

I |X | = v

I ∀B ∈ B,B ⊆ X and |B| = k

I ∀Y ⊆ X with |Y | = t, |{B ∈ B : Y ⊆ B}| = λ



Designs

A matroid design (or equicardinal matroid) is a matroid whose
hyperplanes all have the same size.
A perfect matroid design (PMD) is a matroid whose flats of each
specific rank all have the same size.

The flats, or the circuits, or the independent sets of a PMD form a
t-design (Young & Edmonds, early 1970s)
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Circuit spectrum

The circuit spectrum of a matroid M is

spec(M) = {|C | : C ∈ C(M)}

Analagous to the well-studied cycle spectrum of a graph,

spec(G ) = {|C | : C ∈ C(G )}

where C(G ) is the collection of all cycles in graph G .



Subdivisions

I A subdivision of a matroid is obtained by replacing each
element by a series class.

I In a graphic matroid, this corresponds to replacing each graph
edge by a path.

I A k-subdivision is obtained by replacing each element by a
series class of size k .

I In a graphic matroid, this corresponds to replacing each edge
by a path of length k .
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Small spectrum binary matroids

A matroid is binary provided it can be represented by (the columns
of) a matrix with binary entries. Every graphic matroid is binary.

Theorem (Murty, 1971)

Let M be a connected binary matroid. For η ∈ Z+, spec(M) = {η}
if and only if M is isomorphic to one of the following matroids.

(i) an η-subdivision of U0,1

(ii) a k-subdivision of U1,n, where η = 2k and n ≥ 3

(iii) an l-subdivision of PG (r , 2)∗, where η = 2r l and r ≥ 2

(iv) an l-subdivision of AG (r + 1, 2)∗, where η = 2r l and r ≥ 2



Small spectrum binary matroids

Theorem (Lemos, Reid, Wu 2011)

Let M be a 3-connected binary matroid with largest circuit size
odd. Then |spec(M)| ≤ 2 if and only if M is isomorphic to one of
the following matroids.

(i) U0,1 or U2,3

(ii) S∗2n for some n ≥ 2

(iii) B(r , 2)∗ for some r ≥ 2



Bicircular matroids

The bicircular matroid of graph G = (V ,E ), denoted by B(G )

ground set: E
circuits: edge sets of subdivisions of any of the following

Bowtie, or tight handcuff

Barbell, or loose handcuff

Theta

A bicycle is a connected subgraph containing exactly two
cycles and no leaves.
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A bicircular example

ground set: E = {a, b, c , d , e, f , g , h, i}
circuits: {a, b, d , e, f , g , h, i} = E − {c}

{a, b, c , d , f , g , h, i} = E − {e}
{a, b, c , d , e, g , h, i} = E − {f }
{c , d , e, f , g , h, i} = E − {a, b}
{a, b, c , e, f } = E − {d , g , h, i}



Operations which preserve isomorphism of B(M)

(Coullard, del Greco, and Wagner 1991)

.
roll

unroll

.

.
replacement



Small spectrum bicircular matroids

Bicircular matroid are generally not binary.

Theorem (Lewis, McNulty, Neudauer, Reid, S 2013)

Let M be a connected bicircular matroid. For η ≥ 2,
spec(M) = {η} if and only if M is isomorphic to one of the
following matroids:

(i) a k-subdivision of U1,n where η = 2k and n ≥ 2,

(ii) a k-subdivision of U2,n where η = 3k and n ≥ 3,

(iii) a k-subdivision of U3,5 or U3,6 where η = 4k,

(iv) a k-subdivision of U4,6 where η = 5k.
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Small bicycle spectrum: spec(M) = {η}

1
2

3
n-1

n

U1,n

1 2 n

U2,n U3,5 U3,6

U4,6 U4,6



Small bicycle spectrum: |spec(M)| = 2

Theorem (Lewis, Reid, S)

Let M = B(G ) be a connected bicircular matroid where G is a
subdivision of a 3-connected graph H. Then |spec(M)| = 2 if and
only if H is one of the following graphs.

(i) An (a, b)-subdivision of W3 for distinct positive integers a, b.

(ii) A k-subdivision of W4, K5\e, K5, K3,3, K3,4, or the prism P6

for some k ∈ Z+.
If H is isomorphic to W4, K5\e, or K5, spec(M) = {5k , 6k}.
If H is isomorphic to K3,3, K3,4, or P6, spec(M) = {6k, 7k}.



Small bicycle spectrum: |spec(M)| = 2

How does 3-connectivity matter?

Theorem (Dirac 1963)

A graph G is a subdivision of a simple 3-connected graph without
two vertex-disjoint cycles if and only if G is a subdivision of one of
the following graphs: a wheel graph, K5, K5\e, K3,p, K

′
3,p, K

′′
3,p, or

K ′′′3,p for some p ≥ 3.
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Small bicycle spectrum: |spec(M)| = 2

Theorem (Putnam, S)

Let M = B(G ) be a connected bicircular matroid where G is not
the subdivision of a 3-connected graph. Then |spec(M)| = 2 if and
only if G is a restricted subdivision of one of the following graphs:

(i) A cycle with two or three balloons.

(ii) A theta with a balloon.

(iii) A theta barbell.

(iv) Two equally balanced thetas joined by two paths with the
same endpoints.

(v) A theta barbell with a single balloon attached at either the
center of the subdivided edge or at the branch point of a
balanced theta.



Small bicycle spectrum: |spec(M)| = 3

Theorem (Putnam, S)

Let M = B(G ) be a connected bicircular matroid where G is a
subdivision of a 3-connected graph H. Then |spec(M)| = 3 if and
only if G is one of the following graphs.

(i) An (α, β, γ)-subdivision of W3

(ii) An α-subdivision of W5 or K3,p for p ≥ 4

(iii) A (β, 2β)-subdivision of K5 or K5 \ e, with a matching being
2β subdivided

(iv) A (β, 2β)-subdivision of K3,3 with exactly a single edge, a
perfect matching, or a 4-cycle being 2β subdivided

(v) A (β, 2β)-subdivision of P6 with exactly a matching or a
3-cycle being 2β subdivided

(vi) A restricted (β, 2β)-subdivision of W4
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Large spectrum bicircular matroids

Which graphs have bicycles of many sizes?

Kl ,m with m ≥ l ≥ 2 and m ≥ 3 has
bicycles of sizes 6, 7, 8, . . . 2l + 2



Large spectrum bicircular matroids

Which graphs have bicycles of many sizes?

Kl ,m with m ≥ l ≥ 2 and m ≥ 3 has
bicycles of sizes

6, 7, 8, . . . 2l + 2



Large spectrum bicircular matroids

Which graphs have bicycles of many sizes?

Kl ,m with m ≥ l ≥ 2 and m ≥ 3 has
bicycles of sizes 6

, 7, 8, . . . 2l + 2



Large spectrum bicircular matroids

Which graphs have bicycles of many sizes?

Kl ,m with m ≥ l ≥ 2 and m ≥ 3 has
bicycles of sizes 6, 7

, 8, . . . 2l + 2



Large spectrum bicircular matroids

Which graphs have bicycles of many sizes?

Kl ,m with m ≥ l ≥ 2 and m ≥ 3 has
bicycles of sizes 6, 7, 8, . . .

2l + 2



Large spectrum bicircular matroids

Which graphs have bicycles of many sizes?
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Consecutive cycle lengths

A question of Erdös, settled by Bondy and Vince (1998):
Every graph with minimum degree at least three contains two
cycles whose lengths differ by one or two.

Theorem (Fan 2001)

Let xy be an edge in a 2-connected graph G. for an positive
integer k, if every vertex other than x and y has degree at least
3k, then xy is contained in k + 1 cycles C0,C1, . . .Ck such that
k + 1 < |E (C0)| < |E (C1)| < · · · < |E (Ck)|,
|E (Ci )| − |E (Ci−1)| = 2, 1 ≤ i ≤ k − 1, and
1 ≤ |E (Ck)| − |E (Ck−1| ≤ 2.
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Using strings of cycles

A string of 2-defective cycles



Bicycles of consecutive sizes: strings of cycles

Adjusting this proof for bicycles, we get . . .

Theorem (Putnam, S, Wu)

If G is a 2-connected graph with minimum degree at least 3k and
G contains a non-separating induced odd cycle, then G contains
2(k − 1) bicycles of consecutive sizes.

Theorem (Putnam, S, Wu)

Let x and y be two distinct vertices in a 2-connected graph G. If
every vertex other than x and y has minimum degree at least
3k,with k ≥ 2, then G has k − 1 bicycles,
|E (C1)| < |E (C2)| < · · · < |E (Ck−1)|, |E (Ci )| − |E (Ci−1)| ≤ 2.
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Bicycles of consecutive sizes

This is far from best possible.

Induced odd cycle produces all thetas, no barbells/handcuffs.

Produces multiple intervals of consecutive bicycle sizes, but no
control on the gaps between intervals.



Bicycles of consecutive sizes: spanning trees

Adding any two edges to a spanning
tree induces a bicycle.

If the longest path in a graph has length
p, then the largest bicycle has size
p + 2.



Bicycles of consecutive sizes: spanning trees

Adding any two edges to a spanning
tree induces a bicycle.

If the longest path in a graph has length
p, then the largest bicycle has size
p + 2.



Bicycles of consecutive sizes: spanning trees

Adding any two edges to a spanning
tree induces a bicycle.

If the longest path in a graph has length
p, then the largest bicycle has size
p + 2.



Bicycles of consecutive sizes

Girth g , longest path length p =⇒ 3
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Under what conditions will we have bicycles of all possible sizes?
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Bicycles of consecutive sizes

Theorem
If G has a Hamilton path and minimum degree k ≥ 3 then G has
bicycles of k consecutive sizes, n − k + 3 ≤ |C | ≤ n + 2.

Almost there
If G has minimum degree k ≥ 3 and a maximal path of length p,
then G has bicycles of k − 1 consecutive sizes,
p − k + 3 ≤ |C | ≤ p + 2.
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Utilizing a spanning tree

Choose a rooted depth-first-search spanning tree T rooted at one
end v0 of a maximal path P = v0, v1, . . . vp.

The neighbors (in G ) of any vertex v lie on the path from v to v0
in T .

v0

v6

v0 v0 v0
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Utilizing a spanning tree

v0

vi

vl

um

Vertex um is distance m from the path
at branch vl , with neighbor vi

m < i < l −m

um has no consecutive neighbors vi and vi+1

Minimum degree k ≥ 3 =⇒ l ≥ 2k
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Utilizing a spanning tree

Can we expect all bicycle sizes this way?

The Haewood graph has a full spectrum:
{9, 10, 11, 12, 13, 14, 15}

Bicycles of length 10 require a different structure.
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Can we expect all bicycle sizes this way?
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Some special matroids

The Uniform Matroid Ur ,n = (E , I) has |E | = n and
I = {S ⊆ E : |S | ≤ r}.
PG (r , 2) is the binary projective geometry of rank r + 1.
AG (r , 2) is the affine geometry of rank r + 1.
A matroid is binary provided it can be represented by (the columns
of) a matrix with binary entries.
Every graphic matroid is binary. Bicircular matriods are generally
not binary.


