### The Graph Bicycle Spectrum

#### Dr. Laura Sheppardson

University of Mississippi

May 26, 2015





REPUBLIKA SLOVENIJA MINISTRSTVO ZA IZOBRAŽEVANJE, ZNANOST IN ŠPORT



æ

(ロ) (部) (E) (E)

A matroid M is an ordered pair  $(E, \mathcal{I})$  where E is a finite set and  $\mathcal{I}$  is a collection of subsets of E satisfying the following three conditions:

 $(\mathsf{I1}) \ \emptyset \in \mathcal{I}.$ 

(12) If  $I \in \mathcal{I}$  and  $I' \subseteq I$ , then  $I' \in \mathcal{I}$ .

(13) If  $l_1, l_2 \in \mathcal{I}$  and  $|l_1| < |l_2|$ , then there is an element *e* of  $l_2 - l_1$  such that  $l_1 \cup e \in \mathcal{I}$ . (Exchange Property)

The members of  $\mathcal{I}$  are called the independent sets of M and E is called the ground set of M. Any subset of E that is not independent is called dependent.

#### A matrix example

 $\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$ 

Label the columns of this matrix with a, b, c, d, e, f. Interpreting independence in the standard way, we have a matroid on the ground set  $\{a, b, c, d, e, f\}$ 

A matroid M can also be defined by its set of minimal dependent sets called circuits. The set of circuits of M is denoted by C or C(M).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

(C1) Ø ∉ C.
(C2) If C<sub>1</sub>, C<sub>2</sub> ∈ C and C<sub>1</sub> ⊆ C<sub>2</sub>, then C<sub>1</sub> = C<sub>2</sub>.
(C3) If C<sub>1</sub> and C<sub>2</sub> are distinct members of C and e ∈ C<sub>1</sub> ∩ C<sub>2</sub>, then there is some C<sub>3</sub> ∈ C such that C<sub>3</sub> ⊆ (C<sub>1</sub> ∪ C<sub>2</sub>) - e. (Circuit Elimination Axiom)

Given a graph (V, E), we define the cycle matroid M(G):

- The ground set of M(G) is E.
- $C \subseteq E$  is a circuit of M(G) if and only if C is a cycle in G.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

A matroid which can be realized as the cycle matroid of some graph is called graphic.

A maximal independent set of a matroid M is called a basis of M. A matroid is well defined by specifying its bases,  $\mathcal{B}(M)$ . Let M be a matroid on ground set E. Then the dual matroid of M, denoted  $M^*$ , is the matroid on E with bases  $\{E - B : B \in \mathcal{B}(M)\}$ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

# Duals of graphic matroids

#### Theorem (Tutte)

If M = M(G) is a graphic matroid, then  $M^*$  is graphic if and only if G is planar.

If M is the matroid of a planar graph G, then  $M^*$  is the matroid of the planar dual  $G^*$ .

$$M^*(G) = M(G^*)$$

(日) (四) (코) (코) (코) (코)

| Matroid M                | Dual matroid M*             |
|--------------------------|-----------------------------|
| basis B                  | basis complement $E - B'$   |
| basis complement $E - B$ | basis <i>B</i> ′            |
| circuit                  | cocircuit (bond)            |
| cocircuit (bond)         | circuit                     |
| hyperplane <i>H</i>      | circuit complement $E - C'$ |
| hyperplane comp. $E - H$ | circuit C'                  |
|                          |                             |

A hyperplane is a maximal non-spanning set. The circuits of  $M^*$  are the hyperplane complements of M.

### Designs

A balanced incomplete block design  $B(v, b, r, k, \lambda)$  is a pair (X, B) such that

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

► 
$$|X| = v, |B| = b$$

• 
$$\forall B \in \mathcal{B}, B \subseteq X \text{ and } |B| = k$$

$$\forall x \in X, |\{B \in \mathcal{B} : x \in B\}| = r$$

$$\flat \ \forall x, y \in X, |\{B \in \mathcal{B} : \{x, y\} \subseteq B\}| = \lambda$$

## Designs

A balanced incomplete block design  $B(v, b, r, k, \lambda)$  is a pair (X, B) such that

Example:

The Fano Plane is a (9,7,3,3,1) balanced incomplete block design. It is also a (geometric) matroid.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

For integer t > 1, a t-design t- $(v, k, \lambda)$  is is a pair (X, B) such that

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

## Designs

A matroid design (or equicardinal matroid) is a matroid whose hyperplanes all have the same size. A perfect matroid design (PMD) is a matroid whose flats of each specific rank all have the same size.

The flats, or the circuits, or the independent sets of a PMD form a t-design (Young & Edmonds, early 1970s)

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

| Matroid M                | Dual matroid M*             |
|--------------------------|-----------------------------|
| basis <i>B</i>           | basis complement $E - B'$   |
| basis complement $E - B$ | basis <i>B</i> ′            |
| circuit                  | cocircuit (bond)            |
| cocircuit (bond)         | circuit                     |
| hyperplane <i>H</i>      | circuit complement $E - C'$ |
| hyperplane comp. $E - H$ | circuit C'                  |
|                          |                             |

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

#### Circuit spectrum

#### The circuit spectrum of a matroid M is

$$spec(M) = \{|C| : C \in C(M)\}$$

Analagous to the well-studied cycle spectrum of a graph,

$$spec(G) = \{|C| : C \in \mathcal{C}(G)\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

where  $\mathcal{C}(G)$  is the collection of all cycles in graph G.

### Subdivisions

- A subdivision of a matroid is obtained by replacing each element by a series class.
- In a graphic matroid, this corresponds to replacing each graph edge by a path.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

### Subdivisions

- A subdivision of a matroid is obtained by replacing each element by a series class.
- In a graphic matroid, this corresponds to replacing each graph edge by a path.
- ► A k-subdivision is obtained by replacing each element by a series class of size k.
- In a graphic matroid, this corresponds to replacing each edge by a path of length k.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

#### Small spectrum binary matroids

A matroid is binary provided it can be represented by (the columns of) a matrix with binary entries. **Every graphic matroid is binary.** 

Theorem (Murty, 1971)

Let M be a connected binary matroid. For  $\eta \in \mathbb{Z}^+$ , spec $(M) = \{\eta\}$  if and only if M is isomorphic to one of the following matroids.

- (i) an  $\eta$ -subdivision of  $U_{0,1}$
- (ii) a k-subdivision of  $U_{1,n}$ , where  $\eta = 2k$  and  $n \ge 3$
- (iii) an *I*-subdivision of  $PG(r, 2)^*$ , where  $\eta = 2^r I$  and  $r \ge 2$
- (iv) an *I*-subdivision of  $AG(r + 1, 2)^*$ , where  $\eta = 2^r I$  and  $r \ge 2$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

#### Theorem (Lemos, Reid, Wu 2011)

Let M be a 3-connected binary matroid with largest circuit size odd. Then  $|\text{spec}(M)| \le 2$  if and only if M is isomorphic to one of the following matroids.

(i)  $U_{0,1}$  or  $U_{2,3}$ (ii)  $S_{2n}^*$  for some  $n \ge 2$ (iii)  $B(r,2)^*$  for some  $r \ge 2$ 

The bicircular matroid of graph G = (V, E), denoted by B(G)



The bicircular matroid of graph G = (V, E), denoted by B(G)ground set: Ecircuits: edge sets of subdivisions of any of the following

The bicircular matroid of graph G = (V, E), denoted by B(G)ground set: E

circuits: edge sets of subdivisions of any of the following



(日) (四) (코) (코) (코) (코)

The bicircular matroid of graph G = (V, E), denoted by B(G)ground set: E

circuits: edge sets of subdivisions of any of the following



A bicycle is a connected subgraph containing exactly two cycles and no leaves.

### A bicircular example

ground set: 
$$E = \{a, b, c, d, e, f, g, h, i\}$$
  
circuits:  $\{a, b, d, e, f, g, h, i\} = E - \{c\}$   
 $\{a, b, c, d, f, g, h, i\} = E - \{e\}$   
 $\{a, b, c, d, e, g, h, i\} = E - \{f\}$   
 $\{c, d, e, f, g, h, i\} = E - \{a, b\}$   
 $\{a, b, c, e, f\} = E - \{d, g, h, i\}$ 

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

# Operations which preserve isomorphism of B(M)



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

## Small spectrum bicircular matroids

Bicircular matroid are generally not binary.

#### Small spectrum bicircular matroids

Bicircular matroid are generally not binary.

Theorem (Lewis, McNulty, Neudauer, Reid, S 2013) Let M be a connected bicircular matroid. For  $\eta \ge 2$ ,  $spec(M) = \{\eta\}$  if and only if M is isomorphic to one of the following matroids:

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

(i) a k-subdivision of  $U_{1,n}$  where  $\eta = 2k$  and  $n \ge 2$ ,

(ii) a k-subdivision of  $U_{2,n}$  where  $\eta = 3k$  and  $n \ge 3$ ,

(iii) a k-subdivision of  $U_{3,5}$  or  $U_{3,6}$  where  $\eta = 4k$ ,

(iv) a k-subdivision of  $U_{4,6}$  where  $\eta = 5k$ .

Small bicycle spectrum:  $spec(M) = \{\eta\}$ 



 $U_{1,n}$ 











 $U_{4,6}$ 

 $U_{4,6}$ 

#### Theorem (Lewis, Reid, S)

Let M = B(G) be a connected bicircular matroid where G is a subdivision of a 3-connected graph H. Then |spec(M)| = 2 if and only if H is one of the following graphs.

(i) An (a, b)-subdivision of  $W_3$  for distinct positive integers a, b.

(ii) A k-subdivision of  $W_4$ ,  $K_5 \setminus e$ ,  $K_5$ ,  $K_{3,3}$ ,  $K_{3,4}$ , or the prism  $P_6$  for some  $k \in \mathbb{Z}^+$ .

If H is isomorphic to  $W_4$ ,  $K_5 \setminus e$ , or  $K_5$ ,  $spec(M) = \{5k, 6k\}$ . If H is isomorphic to  $K_{3,3}$ ,  $K_{3,4}$ , or  $P_6$ ,  $spec(M) = \{6k, 7k\}$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

How does 3-connectivity matter?



#### Theorem (Dirac 1963)

A graph G is a subdivision of a simple 3-connected graph without two vertex-disjoint cycles if and only if G is a subdivision of one of the following graphs: a wheel graph,  $K_5$ ,  $K_5 \setminus e$ ,  $K_{3,p}$ ,  $K''_{3,p}$ , or  $K''_{3,p}$  for some  $p \ge 3$ .

#### Theorem (Dirac 1963)

A graph G is a subdivision of a simple 3-connected graph without two vertex-disjoint cycles if and only if G is a subdivision of one of the following graphs: a wheel graph,  $K_5$ ,  $K_5 \setminus e$ ,  $K_{3,p}$ ,  $K''_{3,p}$ , or  $K'''_{3,p}$  for some  $p \geq 3$ .

< □ > < @ > < 注 > < 注 > ... 注

Two disjoint cycles ...



#### Theorem (Dirac 1963)

A graph G is a subdivision of a simple 3-connected graph without two vertex-disjoint cycles if and only if G is a subdivision of one of the following graphs: a wheel graph,  $K_5$ ,  $K_5 \setminus e$ ,  $K_{3,p}$ ,  $K''_{3,p}$ , or  $K'''_{3,p}$  for some  $p \geq 3$ .

《日》 《國》 《臣》 《臣》

æ

Two disjoint cycles ... 3-connected



Theorem (Putnam, S)

Let M = B(G) be a connected bicircular matroid where G is not the subdivision of a 3-connected graph. Then |spec(M)| = 2 if and only if G is a restricted subdivision of one of the following graphs:

- (i) A cycle with two or three balloons.
- (ii) A theta with a balloon.
- (iii) A theta barbell.
- (iv) Two equally balanced thetas joined by two paths with the same endpoints.
- (v) A theta barbell with a single balloon attached at either the center of the subdivided edge or at the branch point of a balanced theta.

Theorem (Putnam, S)

Let M = B(G) be a connected bicircular matroid where G is a subdivision of a 3-connected graph H. Then |spec(M)| = 3 if and only if G is one of the following graphs.

Theorem (Putnam, S)

Let M = B(G) be a connected bicircular matroid where G is a subdivision of a 3-connected graph H. Then |spec(M)| = 3 if and only if G is one of the following graphs.

(i) An  $(\alpha, \beta, \gamma)$ -subdivision of  $W_3$ 

- (ii) An  $\alpha$ -subdivision of  $W_5$  or  $K_{3,p}$  for  $p \ge 4$
- (iii) A  $(\beta, 2\beta)$ -subdivision of  $K_5$  or  $K_5 \setminus e$ , with a matching being  $2\beta$  subdivided
- (iv) A  $(\beta, 2\beta)$ -subdivision of  $K_{3,3}$  with exactly a single edge, a perfect matching, or a 4-cycle being  $2\beta$  subdivided
- (v) A (β,2β)-subdivision of P<sub>6</sub> with exactly a matching or a 3-cycle being 2β subdivided
- (vi) A restricted  $(\beta, 2\beta)$ -subdivision of  $W_4$

#### Large spectrum bicircular matroids

Which graphs have bicycles of many sizes?



Which graphs have bicycles of many sizes?



 $K_{l,m}$  with  $m \ge l \ge 2$  and  $m \ge 3$  has bicycles of sizes

<ロト <四ト <注入 <注下 <注下 <

Which graphs have bicycles of many sizes?



 $K_{l,m}$  with  $m \ge l \ge 2$  and  $m \ge 3$  has bicycles of sizes 6

0

0

0

▲ロト ▲圖ト ▲画ト ▲画ト 三国 - のの()

Which graphs have bicycles of many sizes?



 $K_{l,m}$  with  $m \ge l \ge 2$  and  $m \ge 3$  has bicycles of sizes 6, 7

<ロト <四ト <注入 <注下 <注下 <

0 0

0

Which graphs have bicycles of many sizes?



 $K_{l,m}$  with  $m \ge l \ge 2$  and  $m \ge 3$  has bicycles of sizes 6, 7, 8, ...

<ロト <四ト <注入 <注下 <注下 <

Which graphs have bicycles of many sizes?



 $K_{l,m}$  with  $m \ge l \ge 2$  and  $m \ge 3$  has bicycles of sizes 6, 7, 8, ... 2l + 2

<ロト <四ト <注入 <注下 <注下 <

# Consecutive cycle lengths

A question of Erdös, settled by Bondy and Vince (1998): Every graph with minimum degree at least three contains two cycles whose lengths differ by one or two.

# Consecutive cycle lengths

A question of Erdös, settled by Bondy and Vince (1998): Every graph with minimum degree at least three contains two cycles whose lengths differ by one or two.

#### Theorem (Fan 2001)

Let xy be an edge in a 2-connected graph G. for an positive integer k, if every vertex other than x and y has degree at least 3k, then xy is contained in k + 1 cycles  $C_0, C_1, \ldots C_k$  such that  $k + 1 < |E(C_0)| < |E(C_1)| < \cdots < |E(C_k)|$ ,  $|E(C_i)| - |E(C_{i-1})| = 2$ ,  $1 \le i \le k - 1$ , and  $1 \le |E(C_k)| - |E(C_{k-1}| \le 2$ .

# Using strings of cycles



・ロト ・日子・ ・ ヨト・・

⊒ ⊳

A string of 2-defective cycles

Bicycles of consecutive sizes: strings of cycles

Adjusting this proof for bicycles, we get ...

## Theorem (Putnam, S, Wu)

If G is a 2-connected graph with minimum degree at least 3k and G contains a non-separating induced odd cycle, then G contains 2(k-1) bicycles of consecutive sizes.

(日) (四) (문) (문) (문)

Bicycles of consecutive sizes: strings of cycles

Adjusting this proof for bicycles, we get ...

### Theorem (Putnam, S, Wu)

If G is a 2-connected graph with minimum degree at least 3k and G contains a non-separating induced odd cycle, then G contains 2(k-1) bicycles of consecutive sizes.

#### Theorem (Putnam, S, Wu)

Let x and y be two distinct vertices in a 2-connected graph G. If every vertex other than x and y has minimum degree at least 3k,with  $k \ge 2$ , then G has k - 1 bicycles,  $|E(C_1)| < |E(C_2)| < \cdots < |E(C_{k-1})|, |E(C_i)| - |E(C_{i-1})| \le 2.$  This is far from best possible.

Induced odd cycle produces all thetas, no barbells/handcuffs.

Produces multiple intervals of consecutive bicycle sizes, but no control on the gaps between intervals.

(日) (四) (문) (문) (문)

# Bicycles of consecutive sizes: spanning trees

Adding any two edges to a spanning tree induces a bicycle.



・ロト ・四ト ・ヨト ・ヨト

æ

# Bicycles of consecutive sizes: spanning trees

Adding any two edges to a spanning tree induces a bicycle.



(日) (월) (분) (분)

æ

# Bicycles of consecutive sizes: spanning trees

Adding any two edges to a spanning tree induces a bicycle.

If the longest path in a graph has length p, then the largest bicycle has size p + 2.



▲□> ▲圖> ▲国> ▲国>

#### Girth g, longest path length $p \implies \frac{3}{2}g \le |E(C_1)| \le p+2$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

# Girth g, longest path length $p \implies \frac{3}{2}g \le |E(C_1)| \le p+2$

Under what conditions will we have bicycles of all possible sizes?



#### Theorem

If G has a Hamilton path and minimum degree  $k \ge 3$  then G has bicycles of k consecutive sizes,  $n - k + 3 \le |C| \le n + 2$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

#### Theorem

If G has a Hamilton path and minimum degree  $k \ge 3$  then G has bicycles of k consecutive sizes,  $n - k + 3 \le |C| \le n + 2$ .

#### Almost there

If G has minimum degree  $k \ge 3$  and a maximal path of length p, then G has bicycles of k - 1 consecutive sizes,  $p - k + 3 \le |C| \le p + 2$ .

(日) (문) (문) (문) (문)

Choose a rooted depth-first-search spanning tree T rooted at one end  $v_0$  of a maximal path  $P = v_0, v_1, \ldots v_p$ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Choose a rooted depth-first-search spanning tree T rooted at one end  $v_0$  of a maximal path  $P = v_0, v_1, \ldots v_p$ . The neighbors (in *G*) of any vertex v lie on the path from v to  $v_0$ in T.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Choose a rooted depth-first-search spanning tree T rooted at one end  $v_0$  of a maximal path  $P = v_0, v_1, \ldots v_p$ . The neighbors (in *G*) of any vertex v lie on the path from v to  $v_0$ in T.



< □ > < □ > < □ > < □ > < □ > < □ >



(日) (월) (분) (분)



 $u_m$  has no consecutive neighbors  $v_i$  and  $v_{i+1}$ 



 $u_m$  has no consecutive neighbors  $v_i$  and  $v_{i+1}$ 

Minimum degree  $k \ge 3 \implies l \ge 2k$ 

<ロト <四ト <注入 <注下 <注下 <

Can we expect all bicycle sizes this way?

Can we expect all bicycle sizes this way?



The Haewood graph has a full spectrum:  $\{9, 10, 11, 12, 13, 14, 15\}$ 

・ロト ・四ト ・ヨト ・ヨト

æ

Can we expect all bicycle sizes this way?



The Haewood graph has a full spectrum:  $\{9, 10, 11, 12, 13, 14, 15\}$ 

<ロ> (四) (四) (三) (三) (三)

- 2

Bicycles of length 10 require a different structure.



### Some special matroids

The Uniform Matroid  $U_{r,n} = (E, \mathcal{I})$  has |E| = n and  $\mathcal{I} = \{S \subseteq E : |S| \le r\}$ .

PG(r,2) is the binary projective geometry of rank r+1.

AG(r, 2) is the affine geometry of rank r + 1.

A matroid is binary provided it can be represented by (the columns of) a matrix with binary entries.

Every graphic matroid is binary. Bicircular matriods are generally not binary.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで