On bipartite Q-polynomial distance-regular graphs with $c_2 \leq 2$

Štefko Miklavič, Safet Penjić

Andrej Marušič Institute
University of Primorska

2015 International conference on Graph Theory
Koper, May 26-28, 2015
Outline

1. Basic definition and results from Algebraic graph theory
 (a.1) Distance-regular graphs, examples, hypercubes
 (a.2) Q-polynomial property of DRG
 (a.3) Result of Coughman, motivation

2. Bipartite Q-polynomial DRG with $D \geq 6$ and $c_2 \leq 2$
 Case $D \geq 6$ - Theorem 7.
 Case $D \geq 6$ - Proof of Theorem 7.

3. Equitable partitions when $c_2 \leq 2$
 The partition - part I
 The partition - part II

4. Case $D = 4$
 Theorem 35
Some notation before definition of DRG
A connected graph Γ is called distance-regular (DRG) if there are numbers a_i, b_i, c_i ($0 \leq i \leq D$) s.t. if $\partial(x, y) = h$ then

- $|\Gamma_1(y) \cap \Gamma_{h-1}(x)| = c_h$
- $|\Gamma_1(y) \cap \Gamma_h(x)| = a_h$
- $|\Gamma_1(y) \cap \Gamma_{h+1}(x)| = b_h$

Numbers a_i, b_i and c_i ($0 \leq i \leq D$) are called intersection numbers, and $\{b_0, b_1, ..., b_{D-1}; c_1, c_2, ..., c_D\}$ is intersection array.
Distance-regular graphs

A connected graph Γ is called distance-regular (DRG) if there are numbers a_i, b_i, c_i ($0 \leq i \leq D$) s.t. if $\partial(x, y) = h$ then

- $|\Gamma_1(y) \cap \Gamma_{h-1}(x)| = c_h$
- $|\Gamma_1(y) \cap \Gamma_h(x)| = a_h$
- $|\Gamma_1(y) \cap \Gamma_{h+1}(x)| = b_h$

Numbers a_i, b_i and c_i ($0 \leq i \leq D$) are called intersection numbers, and $\{b_0, b_1, ..., b_{D-1}; c_1, c_2, ..., c_D\}$ is intersection array.
Distance-regular graphs

- A connected graph \(\Gamma \) is called distance-regular (DRG) if there are numbers \(a_i, b_i, c_i \) (\(0 \leq i \leq D \)) s.t. if \(\partial(x, y) = h \) then
 - \(|\Gamma_1(y) \cap \Gamma_{h-1}(x)| = c_h \)
 - \(|\Gamma_1(y) \cap \Gamma_h(x)| = a_h \)
 - \(|\Gamma_1(y) \cap \Gamma_{h+1}(x)| = b_h \)

- Numbers \(a_i, b_i \) and \(c_i \) (\(0 \leq i \leq D \)) are called intersection numbers, and \(\{b_0, b_1, ..., b_{D-1}; c_1, c_2, ..., c_D\} \) is intersection array.
Basic definition and results from Algebraic graph theory
Bipartite Q-polynomial DRG with $D \geq 6$ and $c_2 \leq 2$
Equitable partitions when $c_2 \leq 2$
Case $D = 4$

Distance-regular graphs

- A connected graph Γ is called distance-regular (DRG) if there are numbers a_i, b_i, c_i $(0 \leq i \leq D)$ s.t. if $\partial(x, y) = h$ then
 - $|\Gamma_1(y) \cap \Gamma_{h-1}(x)| = c_h$
 - $|\Gamma_1(y) \cap \Gamma_h(x)| = a_h$
 - $|\Gamma_1(y) \cap \Gamma_{h+1}(x)| = b_h$

- Numbers a_i, b_i and c_i $(0 \leq i \leq D)$ are called intersection numbers, and $\{b_0, b_1, ..., b_{D-1}; c_1, c_2, ..., c_D\}$ is intersection array.
Distance-regular graphs

A connected graph Γ is called distance-regular (DRG) if there are numbers a_i, b_i, c_i ($0 \leq i \leq D$) s.t. if $\partial(x, y) = h$ then

- $|\Gamma_1(y) \cap \Gamma_{h-1}(x)| = c_h$
- $|\Gamma_1(y) \cap \Gamma_h(x)| = a_h$
- $|\Gamma_1(y) \cap \Gamma_{h+1}(x)| = b_h$

Numbers a_i, b_i and c_i ($0 \leq i \leq D$) are called intersection numbers, and $\{b_0, b_1, ..., b_{D-1}; c_1, c_2, ..., c_D\}$ is intersection array.
Distance-regular graphs - examples

- Line graph of Petersen’s graph.
Distance-regular graphs - examples

- Line graph of Petersen’s graph (diameter is three and intersection array is \(\{4, 2, 1; 1, 1, 4\}\))
Hamming graphs

- The Hamming graph $H(n, q)$ is the graph whose vertices are words (sequences or n-tuples) of length n from an alphabet of size $q \geq 2$. Two vertices are considered adjacent if the words (or n-tuples) differ in exactly one term. We observe that $|V(H(n, q))| = q^n$.

- The Hamming graph $H(n, q)$ is distance-regular (with $a_i = i(q - 2)$ ($0 \leq i \leq n$), $b_i = (n - i)(q - 1)$ ($0 \leq i \leq n - 1$) and $c_i = i$ ($1 \leq i \leq n$)).
Hamming graphs

- The Hamming graph $H(n, q)$ is the graph whose vertices are words (sequences or n-tuples) of length n from an alphabet of size $q \geq 2$. Two vertices are considered adjacent if the words (or n-tuples) differ in exactly one term. We observe that $|V(H(n, q))| = q^n$.

- The Hamming graph $H(n, q)$ is distance-regular (with $a_i = i(q - 2)$ ($0 \leq i \leq n$), $b_i = (n - i)(q - 1)$ ($0 \leq i \leq n - 1$) and $c_i = i$ ($1 \leq i \leq n$)).
Hamming graphs $H(3, 2)$.

- Hamming graph $H(3, 2)$.
Hamming graphs $H(2, 3)$

- Hamming graph $H(2, 3)$.
n-dimensional hypercubes (shortly n-cubes)

- Hamming graph $H(n, q)$ in which words of length n are from an alphabet of size $q = 2$ are called n-dimensional hypercubes or shortly n-cubes.
4-dimensional hypercube (4-cubes)
More examples

- That comes from classical objects:
 - Hamming graphs,
 - Johnson graphs,
 - Grassmann graphs,
 - bilinear forms graphs,
 - sesquilinear forms graphs,
 - dual polar graphs (the vertices are the maximal totally isotropic subspaces on a vector space over a finite field with a fixed (non-degenerate) bilinear form)

- Some non-classical examples:
 - Doob graphs,
 - twisted Grassman graphs,

Distance-regular graphs give a way to study these classical objects from a combinatorial view point.
More examples

- That comes from classical objects:
 - Hamming graphs,
 - Johnson graphs,
 - Grassmann graphs,
 - bilinear forms graphs,
 - sesquilinear forms graphs,
 - dual polar graphs (the vertices are the maximal totally isotropic subspaces on a vector space over a finite field with a fixed (non-degenerate) bilinear form)

- Some non-classical examples:
 - Doob graphs,
 - twisted Grassman graphs,

- Distance-regular graphs give a way to study these classical objects from a combinatorial view point.
More examples

- That comes from classical objects:
 - Hamming graphs,
 - Johnson graphs,
 - Grassmann graphs,
 - bilinear forms graphs,
 - sesquilinear forms graphs,
 - dual polar graphs (the vertices are the maximal totally isotropic subspaces on a vector space over a finite field with a fixed (non-degenerate) bilinear form)

- Some non-classical examples:
 - Doob graphs,
 - twisted Grassman graphs,

- Distance-regular graphs give a way to study these classical objects from a combinatorial view point.
Distance-\(i\) matrix

- Let \(\text{Mat}_V(\mathbb{R})\) denote the algebra of matrices over \(\mathbb{R}\) with rows and columns indexed by \(V\).

- For \(0 \leq i \leq D\), let \(A_i\) denote the matrix in \(\text{Mat}_V(\mathbb{R})\) with \((y, z)\)-entry

\[
(A_i)_{yz} = \begin{cases}
1 & \text{if } \partial(y, z) = i, \\
0 & \text{if } \partial(y, z) \neq i
\end{cases} \quad (y, z \in X).
\]

- We call \(A_i\) the \(i\)th distance-\(i\) matrix of \(\Gamma\).
Distance-\emph{i} matrix

- Let $\text{Mat}_V(\mathbb{R})$ denote the algebra of matrices over \mathbb{R} with rows and columns indexed by V.

- For $0 \leq i \leq D$, let A_i denote the matrix in $\text{Mat}_V(\mathbb{R})$ with (y, z)-entry

$$
(A_i)_{yz} = \begin{cases}
1 & \text{if } \partial(y, z) = i, \\
0 & \text{if } \partial(y, z) \neq i
\end{cases} \quad (y, z \in X).
$$

- We call A_i the \textit{ith distance-i matrix} of Γ.

Primitive idempotents

- We refer to E_0, \ldots, E_D as the primitive idempotents of Γ.
- Primitive idempotents of Γ represents the orthogonal projectors onto $\mathcal{E}_i = \ker(A - \theta_i I)$ (along $\text{im}(A - \theta_i I)$)
We refer to E_0, \ldots, E_D as the primitive idempotents of Γ.

Primitive idempotents of Γ represents the orthogonal projectors onto $\mathcal{E}_i = \ker(A - \theta_i I)$ (along $\text{im}(A - \theta_i I)$)
Distance algebra

- If Γ is regular (and Γ is not distance-regular) we have:

\begin{align*}
A^0 &= A_0 = I \\
A^1 &= A_1 = A \\
J &= \Sigma A_i = H(A)
\end{align*}

- Adjacency algebra (ordinary "·" product), $A = \text{span}\{A^0, A^1, \ldots, A^d\} = \text{span}\{E_0, E_1, \ldots, E_d\}$

- Distance algebra (entry-wise "\circ" multiplication), $D = \text{span}\{A_0, A_1, \ldots, A_D\}$
The following statements are equivalent:

(i) Γ is distance-regular,
(ii) \mathcal{D} is an algebra with the ordinary product,
(iii) \mathcal{A} is an algebra with the Hadamard product,
(iv) $\mathcal{A} = \mathcal{D}$.

\[A^0 = A_0 = I \]
\[A^1 = A_1 = A \]
\[J = \sum A_i = H(A) \]
Let Γ denote any distance regular graph with diameter $D \geq 3$, and let A denote the adjacency algebra for Γ. Let E denote a primitive idempotent of Γ.

Since A has a basis A_0, A_1, \ldots, A_D of $0-1$ matrices, A is closed under entry-wise matrix multiplication.

Γ is said to be Q-polynomial with respect to $E = E_1$ whenever there exist an ordering E_0, E_1, \ldots, E_D of the primitive idempotents such that for each i ($0 \leq i \leq D$), the primitive idempotent E_i is a polynomial of degree exactly i in E_1, in the \mathbb{R}-algebra (A, \circ), where \circ denote entry-wise multiplication.

We say Γ is Q-polynomial whenever Γ is Q-polynomial with respect to at least one primitive idempotent.
Q-polynomial property

- Let Γ denote any distance regular graph with diameter $D \geq 3$, and let A denote the adjacency algebra for Γ. Let E denote a primitive idempotent of Γ.

- Since \mathcal{A} has a basis A_0, A_1, \ldots, A_D of $0 - 1$ matrices, \mathcal{A} is closed under entry-wise matrix multiplication.

- Γ is said to be Q-polynomial with respect to $E = E_1$ whenever there exist an ordering E_0, E_1, \ldots, E_D of the primitive idempotents such that for each i ($0 \leq i \leq D$), the primitive idempotent E_i is a polynomial of degree exactly i in E_1, in the \mathbb{R}-algebra (\mathcal{A}, \circ), where \circ denote entry-wise multiplication.

- We say Γ is Q-polynomial whenever Γ is Q-polynomial with respect to at least one primitive idempotent.
Q-polynomial property

Let \(\Gamma \) denote any distance regular graph with diameter \(D \geq 3 \), and let \(A \) denote the adjacency algebra for \(\Gamma \). Let \(E \) denote a primitive idempotent of \(\Gamma \).

Since \(\mathcal{A} \) has a basis \(A_0, A_1, \ldots, A_D \) of 0–1 matrices, \(\mathcal{A} \) is closed under entry-wise matrix multiplication.

\(\Gamma \) is said to be Q-polynomial with respect to \(E = E_1 \) whenever there exist an ordering \(E_0, E_1, \ldots, E_D \) of the primitive idempotents such that for each \(i \) (\(0 \leq i \leq D \)), the primitive idempotent \(E_i \) is a polynomial of degree exactly \(i \) in \(E_1 \), in the \(\mathbb{R} \)-algebra \((\mathcal{A}, \circ) \), where \(\circ \) denote entry-wise multiplication.

We say \(\Gamma \) is Q-polynomial whenever \(\Gamma \) is Q-polynomial with respect to at least one primitive idempotent.
Q-polynomial property

- Let Γ denote any distance regular graph with diameter $D \geq 3$, and let A denote the adjacency algebra for Γ. Let E denote a primitive idempotent of Γ.
- Since A has a basis A_0, A_1, \ldots, A_D of $0-1$ matrices, A is closed under entry-wise matrix multiplication.
- Γ is said to be Q-polynomial with respect to $E = E_1$ whenever there exist an ordering E_0, E_1, \ldots, E_D of the primitive idempotents such that for each i ($0 \leq i \leq D$), the primitive idempotent E_i is a polynomial of degree exactly i in E_1, in the \mathbb{R}-algebra (A, \circ), where \circ denote entry-wise multiplication.
- We say Γ is Q-polynomial whenever Γ is Q-polynomial with respect to at least one primitive idempotent.
Theorem (Caughman, 2004)

Let \(\Gamma \) denote a bipartite distance-regular graph with diameter \(D \geq 12 \). If \(\Gamma \) is \(Q \)-polynomial then \(\Gamma \) is either the ordinary \(2D \)-cycle, or the \(D \)-dimensional hypercube, or the antipodal quotient of the \(2D \)-dimensional hypercube, or the intersection numbers of \(\Gamma \) satisfy

\[
c_i = \frac{(q^i - 1)}{(q - 1)}, \quad b_i = \frac{(q^D - q^i)}{(q - 1)} \quad (0 \leq i \leq D)
\]

for some integer \(q \) at least 2.

- Note that if \(c_2 \leq 2 \), then the last of the above possibilities cannot occur.

- It is the aim of this presentation to further investigate graphs with \(D \leq 11 \) and \(c_2 \leq 2 \).
Result of Coughman, motivation

Theorem (Caughman, 2004)

Let Γ denote a bipartite distance-regular graph with diameter $D \geq 12$. If Γ is Q-polynomial then Γ is either the ordinary $2D$-cycle, or the D-dimensional hypercube, or the antipodal quotient of the $2D$-dimensional hypercube, or the intersection numbers of Γ satisfy $c_i = (q^i - 1)/(q - 1)$, $b_i = (q^D - q^i)/(q - 1)$ ($0 \leq i \leq D$) for some integer q at least 2.

- Note that if $c_2 \leq 2$, then the last of the above possibilities cannot occur.
- It is the aim of this presentation to further investigate graphs with $D \leq 11$ and $c_2 \leq 2$.
Theorem (Caughman, 2004)

Let Γ denote a bipartite distance-regular graph with diameter $D \geq 12$. If Γ is Q-polynomial then Γ is either the ordinary $2D$-cycle, or the D-dimensional hypercube, or the antipodal quotient of the $2D$-dimensional hypercube, or the intersection numbers of Γ satisfy $c_i = (q^i - 1)/(q - 1)$, $b_i = (q^D - q^i)/(q - 1)$ ($0 \leq i \leq D$) for some integer q at least 2.

- Note that if $c_2 \leq 2$, then the last of the above possibilities cannot occur.
- It is the aim of this presentation to further investigate graphs with $D \leq 11$ and $c_2 \leq 2$.
Our main result is the following theorem.

Theorem 1.
Let Γ denote a bipartite Q-polynomial distance-regular graph with diameter $D \geq 4$, valency $k \geq 3$, and intersection number $c_2 \leq 2$. Then one of the following holds:

(i) Γ is the D-dimensional hypercube;
(ii) Γ is the antipodal quotient of the $2D$-dimensional hypercube;
(iii) Γ is a graph with $D = 5$ not listed above.
Theorem 7.

Let Γ denote a Q-polynomial bipartite distance-regular graph with diameter $D \geq 6$, valency $k \geq 3$, and intersection numbers b_i, c_i.

In this section we show that if $c_2 \leq 2$, then Γ is either the D-dimensional hypercube, or the antipodal quotient of the $2D$-dimensional hypercube.
Theorem 7.

- Let Γ denote a Q-polynomial bipartite distance-regular graph with diameter $D \geq 6$, valency $k \geq 3$, and intersection numbers b_i, c_i.

- In this section we show that if $c_2 \leq 2$, then Γ is either the D-dimensional hypercube, or the antipodal quotient of the $2D$-dimensional hypercube.
Idea for proof of Theorem 7.

- Assume that Γ is not the D-dimensional hypercube or the antipodal quotient of the $2D$-dimensional hypercube.

- Then there exist scalars $s^*, q \in \mathbb{R}$ such that

$$c_i = \frac{h(q^i - 1)(1 - s^*q^{D+i+1})}{1 - s^*q^{2i+1}}, \quad b_i = \frac{h(q^D - q^i)(1 - s^*q^{i+1})}{1 - s^*q^{2i+1}}$$

$$h = \frac{1 - s^*q^3}{(q - 1)(1 - s^*q^{D+2})}$$
Idea for proof of Theorem 7.

- Assume that Γ is not the D-dimensional hypercube or the antipodal quotient of the $2D$-dimensional hypercube.
- Then there exist scalars $s^*, q \in \mathbb{R}$ such that

$$c_i = \frac{h(q^i - 1)(1 - s^* q^{D+i+1})}{1 - s^* q^{2i+1}}, \quad b_i = \frac{h(q^D - q^i)(1 - s^* q^{i+1})}{1 - s^* q^{2i+1}}$$

$$h = \frac{1 - s^* q^3}{(q - 1)(1 - s^* q^{D+2})}$$
Idea for proof of Theorem 7. (cont.)

- By [3, Lemma 4.1 and Lemma 5.1], scalars \(s^* \) and \(q \) satisfy

\[
q > 1, \quad \text{and} \quad -q^{-D-1} \leq s^* < q^{-2D-1}. \tag{1}
\]

- Assume first \(c_2 = 1 \). Abbreviate

\[
\alpha = 1 + q - q^2 - q^{D-1} + q^D + q^{D+1}
\]

and observe \(\alpha > 2 \). By Lemma 6(iii) we find

\[
s^* = \frac{\alpha \pm \sqrt{\alpha^2 - 4q^{D+1}}}{2q^{D+3}}.
\]

- Note that \(\alpha^2 - 4q^{D+1} \geq 0 \), and so we have

\[
s^* \geq \frac{\alpha - \sqrt{\alpha^2 - 4q^{D+1}}}{2q^{D+3}}.
\]
Basic definition and results from Algebraic graph theory
Bipartite Q-polynomial DRG with $D \geq 6$ and $c_2 \leq 2$
Equitable partitions when $c_2 \leq 2$
Case $D = 4$

Idea for proof of Theorem 7. (cont.)

- By [3, Lemma 4.1 and Lemma 5.1], scalars s^* and q satisfy

$$q > 1, \quad \text{and} \quad -q^{-D-1} \leq s^* < q^{-2D-1}. \quad (1)$$

- Assume first $c_2 = 1$. Abbreviate
 $$\alpha = 1 + q - q^2 - q^{D-1} + q^D + q^{D+1}$$
 and observe $\alpha > 2$. By Lemma 6(iii) we find

$$s^* = \frac{\alpha \pm \sqrt{\alpha^2 - 4q^{D+1}}}{2q^{D+3}}.$$

- Note that $\alpha^2 - 4q^{D+1} \geq 0$, and so we have

$$s^* \geq \frac{\alpha - \sqrt{\alpha^2 - 4q^{D+1}}}{2q^{D+3}}.$$
Idea for proof of Theorem 7. (cont.)

- By [3, Lemma 4.1 and Lemma 5.1], scalars \(s^* \) and \(q \) satisfy
 \[
 q > 1, \quad \text{and} \quad -q^{-D-1} \leq s^* < q^{-2D-1}. \tag{1}
 \]

- Assume first \(c_2 = 1 \). Abbreviate
 \[
 \alpha = 1 + q - q^2 - q^{D-1} + q^D + q^{D+1}
 \]
 and observe \(\alpha > 2 \). By Lemma 6(iii) we find
 \[
 s^* = \frac{\alpha \pm \sqrt{\alpha^2 - 4q^{D+1}}}{2q^{D+3}}.
 \]

- Note that \(\alpha^2 - 4q^{D+1} \geq 0 \), and so we have
 \[
 s^* \geq \frac{\alpha - \sqrt{\alpha^2 - 4q^{D+1}}}{2q^{D+3}}.
 \]
Idea for proof of Theorem 7. (cont.)

- After some computation we show that

\[s^* \geq \alpha - \frac{\alpha^2 - 4q^{D+1}}{2q^{D+3}} > q^{-2D-1}, \]

contradicting (1).

- Something similar we have also for \(c_2 = 2 \).
Idea for proof of Theorem 7. (cont.)

- ...
- After some computation we show that

\[s^* \geq \frac{\alpha - \sqrt{\alpha^2 - 4q^{D+1}}}{2q^{D+3}} > q^{-2D-1}, \]

contradicting (1).
- Something similar we have also for \(c_2 = 2 \).
Idea for proof of Theorem 7. (cont.)

...

After some computation we show that

\[s^* \geq \frac{\alpha - \sqrt{\alpha^2 - 4q^{D+1}}}{2q^{D+3}} > q^{-2D-1}, \]

contradicting (1).

Something similar we have also for \(c_2 = 2 \).
Definition of D_{ij}

Assume that $\Gamma = (X, R)$ is bipartite with diameter $D \geq 4$, valency $k \geq 3$ and intersection number $c_2 = 2$.

In this section we describe certain partition of the vertex set X.

Definition 8.

Let Γ denote a bipartite distance-regular graph with diameter $D \geq 4$, valency $k \geq 3$ and intersection number $c_2 = 2$. Fix vertices $x, y \in X$ such that $\partial(x, y) = 2$. For all integers i, j we define $D_{ij} = D_{ij}(x, y)$ by

$$D_{ij} = \{ w \in X \mid \partial(x, w) = i \text{ and } \partial(y, w) = j \}.$$

We observe $D_{ij} = \emptyset$ unless $0 \leq i, j \leq D$. Moreover $|D_{ij}| = p_{ij}^2$ for $0 \leq i, j \leq D$.

Definition of D^i_j

- Assume that $\Gamma = (X, R)$ is bipartite with diameter $D \geq 4$, valency $k \geq 3$ and intersection number $c_2 = 2$.
- In this section we describe certain partition of the vertex set X.

Definition 8.

Let Γ denote a bipartite distance-regular graph with diameter $D \geq 4$, valency $k \geq 3$ and intersection number $c_2 = 2$. Fix vertices $x, y \in X$ such that $\partial(x, y) = 2$. For all integers i, j we define $D^i_j = D^i_j(x, y)$ by

$$D^i_j = \{w \in X \mid \partial(x, w) = i \text{ and } \partial(y, w) = j\}.$$

We observe $D^i_j = \emptyset$ unless $0 \leq i, j \leq D$. Moreover $|D^i_j| = p^2_{ij}$ for $0 \leq i, j \leq D$.
Definition of D^i_j

- Assume that $\Gamma = (X, R)$ is bipartite with diameter $D \geq 4$, valency $k \geq 3$ and intersection number $c_2 = 2$.
- In this section we describe certain partition of the vertex set X.

Definition 8.

Let Γ denote a bipartite distance-regular graph with diameter $D \geq 4$, valency $k \geq 3$ and intersection number $c_2 = 2$. Fix vertices $x, y \in X$ such that $\partial(x, y) = 2$. For all integers i, j we define $D^i_j = D^i_j(x, y)$ by

$$D^i_j = \{ w \in X \mid \partial(x, w) = i \text{ and } \partial(y, w) = j \}.$$

We observe $D^i_j = \emptyset$ unless $0 \leq i, j \leq D$. Moreover $|D^i_j| = p_{ij}^2$ for $0 \leq i, j \leq D$.
Definition of D_j^i - examples

- 4-cube with sets D_j^i ($b_0 = 4, b_1 = 3, b_2 = 2, b_3 = 1; c_1 = 1, c_2 = 2, c_3 = 3, c_4 = 4$).
Case $c_2 = 2$

- What if $c_2 = 2$?

Definition 13.

For $1 \leq i \leq D$ we define $A_i = A_i(x, y)$, $C_i = C_i(x, y)$, $B_i(z) = B_i(z)(x, y)$, $B_i(v) = B_i(v)(x, y)$ by

\[
A_i = \{ w \in D_i^i \mid \partial(w, z) = i + 1 \text{ and } \partial(w, v) = i + 1 \},
\]

\[
C_i = \{ w \in D_i^i \mid \partial(w, z) = i - 1 \text{ and } \partial(w, v) = i - 1 \},
\]

\[
B_i(z) = \{ w \in D_i^i \mid \partial(w, z) = i - 1 \text{ and } \partial(w, v) = i + 1 \},
\]

\[
B_i(v) = \{ w \in D_i^i \mid \partial(w, z) = i + 1 \text{ and } \partial(w, v) = i - 1 \}.
\]

We observe D_i^i is a disjoint union of $A_i, B_i(z), B_i(v), C_i$.

The partition - part I

The partition - part II
Case $c_2 = 2$

- What if $c_2 = 2$?

Definition 13.

... For $1 \leq i \leq D$ we define $A_i = A_i(x, y)$, $C_i = C_i(x, y)$, $B_i(z) = B_i(z)(x, y)$, $B_i(v) = B_i(v)(x, y)$ by

$$A_i = \{w \in \mathcal{D}_i^i | \partial(w, z) = i + 1 \text{ and } \partial(w, v) = i + 1\},$$

$$C_i = \{w \in \mathcal{D}_i^i | \partial(w, z) = i - 1 \text{ and } \partial(w, v) = i - 1\},$$

$$B_i(z) = \{w \in \mathcal{D}_i^i | \partial(w, z) = i - 1 \text{ and } \partial(w, v) = i + 1\},$$

$$B_i(v) = \{w \in \mathcal{D}_i^i | \partial(w, z) = i + 1 \text{ and } \partial(w, v) = i - 1\}.$$

We observe \mathcal{D}_i^i is a disjoint union of $A_i, B_i(z), B_i(v), C_i$.

Case $c_2 = 2$ (cont.)

Partition of graph Γ, which involves $4(D - 1) + 2 \ell$ cells
Equitable partition

- We claim that the partition of $\mathcal{V}\Gamma$ into nonempty sets $D_{i+1}^{i-1}, D_{i-1}^{i+1}$ (1 ≤ i ≤ $D - 1$), A_i (2 ≤ i ≤ $D - 1$), $B_i(z), B_i(v)$ (1 ≤ i ≤ $D - 1$) and C_i (3 ≤ i ≤ D) is equitable.

- Main tool is "balanced set theorem".

Theorem (Terwilliger, 1995) (abridged version of theorem)

Let Γ denote a distance-regular graph with diameter $D \geq 3$. Let E denote a nontrivial primitive idempotent of Γ and let $\{\theta^*_i\}_{i=0}^D$ denote the corresponding dual eigenvalue sequence. Then for all integers h, i, j (1 ≤ h ≤ D), (0 ≤ i, j ≤ D) and for all $x, y \in \mathcal{X}$ such that $\partial(x, y) = h$,

$$\sum_{z \in \mathcal{X}} E\hat{z} - \sum_{z \in \mathcal{X}} E\hat{z} = p_{ij}^h \frac{\theta^*_i - \theta^*_j}{\theta^*_0 - \theta^*_h} (E\hat{x} - E\hat{y}).$$
Equitable partition

- We claim that the partition of $V\Gamma$ into nonempty sets $D_{i+1}^{i-1}, D_{i-1}^{i+1}$ ($1 \leq i \leq D - 1$), A_i ($2 \leq i \leq D - 1$), $B_i(z), B_i(v)$ ($1 \leq i \leq D - 1$) and C_i ($3 \leq i \leq D$) is equitable.
- Main tool is "balanced set theorem".

Theorem (Terwilliger, 1995) (abridged version of theorem)

Let Γ denote a distance-regular graph with diameter $D \geq 3$. Let E denote a nontrivial primitive idempotent of Γ and let $\{\theta_i^*\}_{i=0}^D$ denote the corresponding dual eigenvalue sequence. Then for all integers h, i, j ($1 \leq h \leq D$), ($0 \leq i, j \leq D$) and for all $x, y \in X$ such that $\partial(x, y) = h$,

$$\sum_{z \in X, \partial(x,z)=i} E\hat{z} - \sum_{z \in X, \partial(y,z)=j} E\hat{z} = p_{ij}^h \frac{\theta_i^* - \theta_j^*}{\theta_0^* - \theta_h^*} (E\hat{x} - E\hat{y}).$$
Equitable partition

- We claim that the partition of $V\Gamma$ into nonempty sets $D_{i+1}^{-1}, D_{i-1}^{i+1} (1 \leq i \leq D - 1)$, $A_i (2 \leq i \leq D - 1)$, $B_i(z), B_i(v) (1 \leq i \leq D - 1)$ and $C_i (3 \leq i \leq D)$ is equitable.
- Main tool is "balanced set theorem".

Theorem (Terwilliger, 1995) (abridged version of theorem)

Let Γ denote a distance-regular graph with diameter $D \geq 3$. Let E denote a nontrivial primitive idempotent of Γ and let $\{\theta_i^*\}_{i=0}^D$ denote the corresponding dual eigenvalue sequence. Then for all integers $h, i, j (1 \leq h \leq D), (0 \leq i, j \leq D)$ and for all $x, y \in X$ such that $\partial(x, y) = h$,

$$\sum_{z \in X \atop \partial(x, z) = i} E\hat{z} - \sum_{z \in X \atop \partial(y, z) = j} E\hat{z} = p_{ij}^h \frac{\theta_i^* - \theta_j^*}{\theta_0^* - \theta_h^*} (E\hat{x} - E\hat{y}).$$
Case $D = 4$

- In this section we consider Q-polynomial bipartite distance-regular graph Γ with intersection number $c_2 \leq 2$, valency $k \geq 3$ and diameter $D = 4$.
- We show that Γ is either the 4-dimensional hypercube, or the antipodal quotient of the 8-dimensional hypercube.
In this section we consider Q-polynomial bipartite distance-regular graph Γ with intersection number $c_2 \leq 2$, valency $k \geq 3$ and diameter $D = 4$.

We show that Γ is either the 4-dimensional hypercube, or the antipodal quotient of the 8-dimensional hypercube.
For the case $c_2 = 1$ we have the following result.

Theorem (Miklavič, 2007)

There does not exist a Q-polynomial bipartite distance-regular graph with diameter $D = 4$, valency $k \geq 3$ and intersection number $c_2 = 1$.
For the case $c_2 = 1$ we have the following result.

Theorem (Miklavič, 2007)

There does not exist a Q-polynomial bipartite distance-regular graph with diameter $D = 4$, valency $k \geq 3$ and intersection number $c_2 = 1$.
$c_2 = 2$ - Equitable partition
\(c_2 = 2 \) - ingredients

Let \(\Gamma \) denote a \(Q \)-polynomial bipartite distance-regular graph with diameter \(D = 4 \), valency \(k \geq 4 \) and intersection number \(c_2 = 2 \). Assume \(\Gamma \) is not the 4-dimensional hypercube or the antipodal quotient of the 8-dimensional hypercube.

- \(|\mathcal{A}_2| = (k - 2)(c_3 - 3)/2 \);
- \(c_3 \geq 4 \) if and only if \(\mathcal{A}_2 \neq \emptyset \);
- pick \(w \in \mathcal{A}_2 \) let \(\lambda \) denote number or neighbours of \(w \) in \(\mathcal{A}_3 \);
- \(\lambda = \frac{(k - 2)b_3(b_3 - 1)}{(k - 2)(k - 3) - 2b_3} \);
- \((k - 2)(k - 3) - 2b_3 \) divides \((k - 2)b_3(b_3 - 1) \).
Let Γ denote a Q-polynomial bipartite distance-regular graph with diameter $D = 4$, valency $k \geq 4$ and intersection number $c_2 = 2$. Assume Γ is not the 4-dimensional hypercube or the antipodal quotient of the 8-dimensional hypercube.

- $|A_2| = (k - 2)(c_3 - 3)/2$;
- $c_3 \geq 4$ if and only if $A_2 \neq \emptyset$;
- pick $w \in A_2$ let λ denote number or neighbours of w in A_3;
- $\lambda = \frac{(k - 2)b_3(b_3 - 1)}{(k - 2)(k - 3) - 2b_3}$;
- $(k - 2)(k - 3) - 2b_3$ divides $(k - 2)b_3(b_3 - 1)$.
\[c_2 = 2 - \text{ingredients} \]

- Let \(\Gamma \) denote a \(Q \)-polynomial bipartite distance-regular graph with diameter \(D = 4 \), valency \(k \geq 4 \) and intersection number \(c_2 = 2 \). Assume \(\Gamma \) is not the 4-dimensional hypercube or the antipodal quotient of the 8-dimensional hypercube.
- \(|A_2| = (k - 2)(c_3 - 3)/2; \)
- \(c_3 \geq 4 \) if and only if \(A_2 \neq \emptyset; \)
- pick \(w \in A_2 \) let \(\lambda \) denote number or neighbours of \(w \) in \(A_3; \)
- \[\lambda = \frac{(k - 2)b_3(b_3 - 1)}{(k - 2)(k - 3) - 2b_3}; \]
- \((k - 2)(k - 3) - 2b_3 \) divides \((k - 2)b_3(b_3 - 1) \)
$c_2 = 2$ - ingredients

- Let Γ denote a Q-polynomial bipartite distance-regular graph with diameter $D = 4$, valency $k \geq 4$ and intersection number $c_2 = 2$. Assume Γ is not the 4-dimensional hypercube or the antipodal quotient of the 8-dimensional hypercube.
- $|A_2| = (k - 2)(c_3 - 3)/2$;
- $c_3 \geq 4$ if and only if $A_2 \neq \emptyset$;
- pick $w \in A_2$ let λ denote number or neighbours of w in A_3;
- $\lambda = \frac{(k - 2)b_3(b_3 - 1)}{(k - 2)(k - 3) - 2b_3}$;
- $(k - 2)(k - 3) - 2b_3$ divides $(k - 2)b_3(b_3 - 1)$.
Let Γ denote a Q-polynomial bipartite distance-regular graph with diameter $D = 4$, valency $k \geq 4$ and intersection number $c_2 = 2$. Assume Γ is not the 4-dimensional hypercube or the antipodal quotient of the 8-dimensional hypercube.

- $|A_2| = (k - 2)(c_3 - 3)/2$;
- $c_3 \geq 4$ if and only if $A_2 \neq \emptyset$;
- pick $w \in A_2$ let λ denote number or neighbours of w in A_3;
- $\lambda = \frac{(k - 2)b_3(b_3 - 1)}{(k - 2)(k - 3) - 2b_3}$;
- $(k - 2)(k - 3) - 2b_3$ divides $(k - 2)b_3(b_3 - 1)$.
$c_2 = 2$ - ingredients

- Let Γ denote a Q-polynomial bipartite distance-regular graph with diameter $D = 4$, valency $k \geq 4$ and intersection number $c_2 = 2$. Assume Γ is not the 4-dimensional hypercube or the antipodal quotient of the 8-dimensional hypercube.

- $|A_2| = \frac{(k - 2)(c_3 - 3)}{2}$;

- $c_3 \geq 4$ if and only if $A_2 \neq \emptyset$;

- Pick $w \in A_2$ let λ denote number or neighbours of w in A_3;

- $\lambda = \frac{(k - 2)b_3(b_3 - 1)}{(k - 2)(k - 3) - 2b_3}$;

- $(k - 2)(k - 3) - 2b_3$ divides $(k - 2)b_3(b_3 - 1)$
Basic definition and results from Algebraic graph theory
Bipartite Q-polynomial DRG with $D \geq 6$ and $c_2 \leq 2$
Equitable partitions when $c_2 \leq 2$
Case $D = 4$

$c_2 = 2$ - ingredients (cont.)

- Each vertex in $B_3(v)$ has exactly $\frac{(c_3 - 3)(b_3 - \lambda)}{b_3}$ neighbours in A_2.
- $(k - 2)(k - 3) - 2b_3$ divides $(k - 4)b_3(b_3 - 1)$
- $(k - 2)(k - 3) - 2b_3$ divides $2b_3(b_3 - 1)$;
- $(k - 2)(k - 3) = 2b_3^2$;
- $\lambda = (k - 2)/2$;
- $q = -(\sqrt{5} + 3)/2$;
- $s^* = 72\sqrt{5} - 161$.
\(c_2 = 2 \) - ingredients (cont.)

- Each vertex in \(B_3(v) \) has exactly \(\frac{(c_3 - 3)(b_3 - \lambda)}{b_3} \) neighbours in \(A_2 \).
- \((k - 2)(k - 3) - 2b_3\) divides \((k - 4)b_3(b_3 - 1)\)
- \((k - 2)(k - 3) - 2b_3\) divides \(2b_3(b_3 - 1)\);
- \((k - 2)(k - 3) = 2b^2_3\);
- \(\lambda = (k - 2)/2\);
- \(q = -((\sqrt{5} + 3)/2)\);
- \(s^* = 72\sqrt{5} - 161\).
\(c_2 = 2 \) - ingredients (cont.)

- Each vertex in \(B_3(v) \) has exactly \(\frac{(c_3 - 3)(b_3 - \lambda)}{b_3} \) neighbours in \(A_2 \).
- \((k - 2)(k - 3) - 2b_3\) divides \((k - 4)b_3(b_3 - 1)\)
- \((k - 2)(k - 3) - 2b_3\) divides \(2b_3(b_3 - 1)\);
- \((k - 2)(k - 3) = 2b_3^2\);
- \(\lambda = (k - 2)/2\);
- \(q = -(\sqrt{5} + 3)/2\);
- \(s^* = 72\sqrt{5} - 161\).
$c_2 = 2$ - ingredients (cont.)

- Each vertex in $B_3(v)$ has exactly $\frac{(c_3 - 3)(b_3 - \lambda)}{b_3}$ neighbours in A_2.
- $(k - 2)(k - 3) - 2b_3$ divides $(k - 4)b_3(b_3 - 1)$
- $(k - 2)(k - 3) - 2b_3$ divides $2b_3(b_3 - 1)$;
- $(k - 2)(k - 3) = 2b_3^2$;
- $\lambda = (k - 2)/2$;
- $q = -(\sqrt{5} + 3)/2$;
- $s^* = 72\sqrt{5} - 161$.
$c_2 = 2$ - ingredients (cont.)

- Each vertex in $B_3(v)$ has exactly $\frac{(c_3 - 3)(b_3 - \lambda)}{b_3}$ neighbours in A_2.
- $(k - 2)(k - 3) - 2b_3$ divides $(k - 4)b_3(b_3 - 1)$
- $(k - 2)(k - 3) - 2b_3$ divides $2b_3(b_3 - 1)$
- $(k - 2)(k - 3) = 2b_3^2$
- $\lambda = (k - 2)/2$
- $q = - (\sqrt{5} + 3)/2$
- $s^* = 72\sqrt{5} - 161$.
$c_2 = 2$ - ingredients (cont.)

- Each vertex in $B_3(v)$ has exactly $\frac{(c_3 - 3)(b_3 - \lambda)}{b_3}$ neighbours in A_2.
- $(k - 2)(k - 3) - 2b_3$ divides $(k - 4)b_3(b_3 - 1)$
- $(k - 2)(k - 3) - 2b_3$ divides $2b_3(b_3 - 1)$;
- $(k - 2)(k - 3) = 2b_3^2$;
- $\lambda = (k - 2)/2$;
- $q = -(\sqrt{5} + 3)/2$;
- $s^* = 72\sqrt{5} - 161$.
$c_2 = 2$ - ingredients (cont.)

- Each vertex in $B_3(v)$ has exactly $\frac{(c_3 - 3)(b_3 - \lambda)}{b_3}$ neighbours in A_2.
- $(k - 2)(k - 3) - 2b_3$ divides $(k - 4)b_3(b_3 - 1)$
- $(k - 2)(k - 3) - 2b_3$ divides $2b_3(b_3 - 1)$;
- $(k - 2)(k - 3) = 2b_3^2$;
- $\lambda = (k - 2)/2$;
- $q = -(\sqrt{5} + 3)/2$;
- $s^* = 72\sqrt{5} - 161$.
Theorem 35.
Let Γ denote a Q-polynomial bipartite distance-regular graph with diameter $D = 4$, valency $k \geq 3$ and intersection number $c_2 = 2$. Then Γ is either the 4-dimensional hypercube, or the antipodal quotient of the 8-dimensional hypercube.

Assume first that $c_3 \geq 4$. Then by Lemma 34 we have $q = -(\sqrt{5} + 3)/2$ and $s^* = 72\sqrt{5} - 161$. Lemma 6(iii) now implies $k = -6$, a contradiction. Therefore $c_3 = 3$. But now [4, Theorem 4.6] implies that Γ is either the 4-dimensional hypercube, or the antipodal quotient of the 8-dimensional hypercube.
Let Γ denote a Q-polynomial bipartite distance-regular graph with diameter $D = 4$, valency $k \geq 3$ and intersection number $c_2 = 2$. Then Γ is either the 4-dimensional hypercube, or the antipodal quotient of the 8-dimensional hypercube.

Assume first that $c_3 \geq 4$. Then by Lemma 34 we have $q = -(\sqrt{5} + 3)/2$ and $s^* = 72\sqrt{5} - 161$. Lemma 6(iii) now implies $k = -6$, a contradiction. Therefore $c_3 = 3$. But now [4, Theorem 4.6] implies that Γ is either the 4-dimensional hypercube, or the antipodal quotient of the 8-dimensional hypercube.
Basic definition and results from Algebraic graph theory
Bipartite Q-polynomial DRG with $D \geq 6$ and $c_2 \leq 2$
Equitable partitions when $c_2 \leq 2$

Case $D = 4$

Theorem 35

