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Definition

Let G be an Abelian group, D C G. Then D is a difference set if
the list of non-zero differences d — d’ has some nice property, for
instance

. every element occurs the same number A\ of times.
. every element occurs \ or p times.

. every element outside a certain subgroup occurs A times.

Parameters: |G|, |D
conditions.

. A, ..., usually some trivial necessary
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Examples with A =1

0,1,3} ¢ 7y
{07 17 37 9} - Z13
{3, 6,7,12, 14} C Zn

4/32



Some tendencies ...

» The more cyclic a group is, the less difference sets it has.
» Small A, less difference sets.

> If there are some examples with certain parameters, there are
usually many.
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Incidence structures: The geometry world

From any difference set D we construct an incidence structure

» Points are elements in G

» Blocks are translates D + g of D
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Incidence structures: The geometry world

From any difference set D we construct an incidence structure

» Points are elements in G
> Blocks are translates D + g of D
Important observation:
g — h has )\ difference representations if and only if g and h are on

A blocks.
Difference sets with A = 1 correspond to projective planes:

> q2 4+ g + 1 points
» >+ q+1 lines
» two different points are on exactly one line.

Prime Power Conjecture: g must be a prime power!
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Remark about projective planes

» g = p prime: Only one example? open
» g = p’ with £ > 2: Many, many examples. known

Remark about cyclic difference set with \ = 1:
Only one known example! Supports the “tendency”
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Remark about projective planes

» g = p prime: Only one example? open
» g = p’ with £ > 2: Many, many examples. known

Remark about cyclic difference set with \ = 1:
Only one known example! Supports the “tendency”

Construction: Elements of trace 0 in multiplicative group of F s
modulo multiplicative subgroup of order g — 1.
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Another representation of a plane

Vector space F%f, collection of p’ + 1 subspaces of dimension f
with pairwise trivial intersection. spread

Example
1-dimensional subspaces in Ff, with g = p’.
Corresponding projective plane:

» Points are elements in F%f

» lines are cosets of subspaces.

There are many, many examples (translation planes).

Remark: Not really a difference set construction.
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Special translation planes, but p odd

Some spreads have a nice construction:

Example
f(x) =x* on Fr then L, : x — f(x + a) — f(x) — f(a) = 2xa
generates subspaces (spread)

{(x, La(x)) + x € Fpe}

plus {(0,x) : x € Fr}
When are the subspaces “disjoint”?
Condition:

L, are linear and bijective.

Note: The L, form a vector space of linear invertible mappings!
This is not true for general spreads.
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Difference set representation, COULTER, HENDERSON
(2008)

If f describes a spread, then
{(GF(X) - x€Fyr} CFyr x Fy

is a difference set: Every element not in {0} x IF s has exactly
A = 1 difference representation.

Example

{(0,0),(1,1),(2,1)} C Z3 x Z3

There are many examples.
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Why not p = 27

x = f(x+a)— f(x)

cannot be bijective if p = 2.

But there are spreads and also vector spaces of invertible matrices.
Actually, there are many, many, more than for p odd (KANTOR
2003)
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Two important definitions

A function f : F, — Fg is planar (PN), if
x+— f(x+a) — f(x)

is a permutation for all a # 0.

A function f : F, — I is almost perfect nonlinear (APN) if
x = f(x+a)—f(x)

is 2 to 1 for all a# 0 and q is even.
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Monomial APN’s x9 on Fyn

d | Condition |

Gold 2'+1 ged(i,n) =1
Kasami 24 —2M 41 ged(i,n) =1
Welch 2t +3 n=2t+1
Niho 2t 423 — 1, t even n=2t+1

2t4+2°% —1, t odd
inverse function 22t 2 n=2t+1
Dobbertin 24t 4 03t 4 02t 4 ot n =5t
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Some infinite families: g = p”

Example (p odd)
xP*+1 s planar on I if n/ ged(n, k) is odd.

Example (p = 2)
x2+1 is APN on Fan if ged(n, k) = 1.

Example (p = 3, COULTER, MATTHEWS 1997;
DING,YUAN 2006)

x10 4+ x6 — x? s planar on F3n.

Example (p = 2, BuDAGHYAN, CARLET, LEANDER 2009)
x3 + tr(x°) is APN on Fan.

Example (p = 2)
x(=1) is APN on IF5 if n is odd.

14 / 32



quadratic vs. non-quadratic

f is called a Dembowski-Ostrom polynomial or quadratic if
f(x+a)—f(x)

is affine:

Z o XP+PI+25XPJ+7

i, i)

Linear and constant terms are not important!

Until 2006, only few non-quadratic APN’s were known, and only
the classical quadratic monomials. This changed dramatically in
2006 EDEL, P., KYUREGHYAN; BIERBRAUER; DILLON, where
many new quadratic APN’s were constructed.
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The quadratic case

Let f(x) =>_;; a,-ijpi*'Pi. This gives a vector space of bilinear
forms Fr x Fr — Fp:

(x,y) = f(x+y) = f(x) = f(y)

and apply projections onto [F,.

Theorem
f quadratic and planar exists iff there is a vector space consisting
of symmetric matrices of full rank.

Geometers call these symplectic semifield spreads.
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The geometric approach

Geometers searched for these objects and found many, and even
more if p = 2, but the matrices are not alternating, hence cannot
be constructed from a function f.

Diagonal is needed to get a vector space of symmetric invertible
matrices, in this way Z4 enters the arena.

Functions which describe these spreads satisfy

x— f(x+a)+f(x)+a-x

are bijective. (ZHOU 2013, also HORADAM)
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APN in terms of alternating matrices

Let's do almost the best and try to find a vector space of
alternating matrices of large ranks: Then they can be constructed

from a mapping f:
Theorem

f quadratic and APN iff there is a vector space of alternating
matrices minimizing the sum of the pco-rank,

Problem 1

Can we use this picture to construct more quadratic APN
functions?
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Yu, WANG, L1 2012/2014

Change some positions of the alternating matrices carefully. YU,
WANG, LI constructed many new quadratic APN functions for
n=717,8.

Problem 2
Find families in this way!
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Component functions

The vector space generated here is the vector space of all
component functions of f.
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Component functions

The vector space generated here is the vector space of all
component functions of f.

Try to build an APN function from component functions. In the
quadratic case: Use alternating matrices.

Suggestion by CLAUDE CARLET: Plateaued functions. They have
the same Walsh spectrum as quadratic functions.

Important Remark: All infinite families of APN functions so far
are constructed directly, given a polynomial, although in geometry
it seems easier to construct spreads!
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The “trans-characteristic” construction

There are quite a few infinite families of APN functions and of
planar functions, sometimes with similar proofs in even and odd
characteristic:

A very interesting example:

S k 2k+s
X2 +1 + ax2 +2

is APN on Fy3, BUDAGHYAN, CARLET, LEANDER, FELKE
(2006) and
k 2k
xPTHL P T2

is planar on ¥z, ZHA, KYUREGHYAN, WANG (2009)
« must be choosen properly.
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Question

Problem 3

Is there perhaps a better understanding of this construction in
terms of the component functions and their associated symmetric
matrices (in the planar case) or alternating matrices (in the APN
case).
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An important result by Menichetti

Theorem _
A planar function on [F,n with n prime is equivalent to xP*Lif n is
a prime and p sufficiently large.

The result by ZHA, KYUREGHYAN, WANG shows that this cannot
be true for composite (odd!) numbers. If n is even, it seems easier
to find APN/PN functions using bivariate methods [F > = qu
(APN: CARLET (2011); planar P. Znou (2013)).
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My favorite problem

Finding new examples of quadratic planar or APN functions seems
to be less interesting now.

Problem 4
Show that

» there is no polynomial g, such that the number of (quadratic)
planar or APN functions on ) is smaller than gy(n) for all n.

» Show that the number of APN functions grows exponentially
in n (no Menichetti bound).
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Construction method: Switching or Projection

Theorem (BUDAGHYAN, CARLET, LEANDER (2009))

X3+ tr(x%)
is APN.
Theorem (GOLOGLU (2015))

X2k+1 + [trfn(x)]zkﬂ

is APN on Foom if gcd k,2m =1 and m is even.
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The BIG open problem

BRWONING, DILLON, McQUISTAN, WOLFE (2009) found an
APN permutation in [Fy6. They used the APN
x = x3 + x10 4 ax?,

Problem 5
Are there other examples of APN permutations in Fan if n is even?
It is easy to find APN permutations if n is odd.

Recently, many constructions of “almost APN" permutations with
n even (differentially 4-uniform) have been constructed.
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Walsh spectrum

In the quadratic case, the ranks of x — f(x +y) — f(x) — f(y)
determine the Walsh spectrum of f. Which rank distributions are
possible?

More generally (including non-quadratic case): Determine

{* Z( )tr(ux—i-/if : ’6 c an,ﬂ ?é 0 *}

X,y

Result

» f quadratic and n odd: Walsh spectrum is known (almost
bent functions).

» n even: Walsh spectrum is not known, even for quadratic
APN.

If nis even, only one quadratic APN is known with n even and not
5-valued spectrum.
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Which Walsh spectra

Problem 6
Determine the possible Walsh spectra of APN functions
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Composing two functions

Theorem (WENG, ZENG (2012))

If m: Fq — Fyq is injective on squares and 7(0) = 0, then
f(x) = 7(x?) is planar provided that it is Dembowski-Ostrom
(quadratic).

Proof.

x? is planar, 7((x + a)?) — m(x?) = 0 has at most one solution,
which is sufficient since m(x?) is quadratic (which means

m((x + a)?) — 7(x?) is affine). O
Example

x® + x3 — x is permutation on [F3» if n = 2 or n odd. Hence
x10 4+ x6 — x? s planar.

20 / 32



The APN analogue, 2014

Theorem (CARLET, GONG, TAN (2015))

If m:Fq — Fy is injective on cubes and 7(0) = 0, then
f(x) = m(x3) is APN provided that it is Dembowski-Ostrom
(quadratic).

Example

x + tr(x3) is permutation on Fon if n is even. Hence x> + tr(x%) is
planar.

Problem 7
Exploit this: Composing permutation polynomial with x* or x3.
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One sporadic non-quadratic APN

EDEL, P. 2009 found some u such that
x3 4 M (x4 x18 4 x20 4 x24) 4
tr3((u°x)?) + tr3(x°1))
in Fy is APN, where
X3+ u17(X17 4 x18 4 420 +x24)

is APN (switching)
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One family of non-quadratic planar functions

Theorem (COULTER, MATTHEWS 1997)

In F3n, the mapping
»(3°+1)/2

with gcd(a, n) = 1, a odd, is planar.

Problem 8
Find more non-quadratic planar or APN mappings.
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