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Overview

Enes Pasalic (UP FAMNIT & IAM)

of Cryptographic Functions



Why stream ciphers ...

@ ... when we have so many good block ciphers ?
o IDEA, KASUMI, FEAL, DES, AES, ...

o Lightweight representatives : PRESENT, KATAN, KLEIN, SPECK ...
(1000-2000 gate equivalents (GE))

@ Block ciphers are : well understood and analyzed, standardized, and
can work in stream cipher mode.

’ “Stream ciphers - Dead or Alive” ‘
| Asiacrypt 2004, invited talk by Adi Shamir|
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Why stream ciphers ...

@ ... when we have so many good block ciphers ?
o IDEA, KASUMI, FEAL, DES, AES, ...

o Lightweight representatives : PRESENT, KATAN, KLEIN, SPECK ...
(1000-2000 gate equivalents (GE))

@ Block ciphers are : well understood and analyzed, standardized, and
can work in stream cipher mode.

’ “Stream ciphers - Dead or Alive” ‘
| Asiacrypt 2004, invited talk by Adi Shamir|

If not hardware efficient then :

‘ “Why nonlinear combiners and filtering generators 7 " ‘
‘ BCS 2015, tutorial talk by Enes Pasalic‘
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Additive stream ciphers

| Keystream
generator

m
N

Genera model of a binary additive stream cipher
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Filtering Boolean functions in nonlinear combiners
Boolean function in nonlinear combiner

LESRL
LI'SR2

LI'SRn

Vectorial Boolean functions (S-boxes) for increased throughput
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Linear Feedback Shift Registers (LFSR)

s, N s, t=0 s, So
Ly B
1 0 1 1 t=1
0 1 0 1 t=2
0 1 1 1 t=15

@ The recurrence is Sy44 = S¢43 + S, t > 0.
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LFSR filters - example

secret key public

k b'ti /initiai value

initialization

int. state, S bits
S>=2k X T)—
transition
filter

keystream )

o Initial state xp = sp,...,Ss_1. Then x; = L(sp,...,S5_1).

o Problem: Recover sp,...,s5_1 from zy,...,2zy_1,

Zt:f(Xt)szLt(So,...,Ss_l), 0<t<N-1.
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Cryptographic criteria for filtering Boolean functions

High algebraic degree (linear complexity, alg. attacks)
High nonlinearity (affine approximation attacks)
Resiliency (correlation attacks)

Optimal algebraic immunity (alg. attacks)

Good resistance to (fast) algebraic attacks

Hardware efficient (e.g. algebraic thickness Carlet 2003)
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Cryptographic criteria for filtering Boolean functions

e High algebraic degree (linear complexity, alg. attacks)
High nonlinearity (affine approximation attacks)
Resiliency (correlation attacks)

Optimal algebraic immunity (alg. attacks)

Good resistance to (fast) algebraic attacks

Hardware efficient (e.g. algebraic thickness Carlet 2003)

MAIN PROBLEM : Satisfy all requirements and do not forget
implementation issues !

LFSR has (relatively) efficient hardware implementation, for K = 80 bits

(at least) |LFSR| = 160 requiring c.a. 640 GE (gate equivalents). For
Boolean function it remains c.a. 400-1000 GE for efficient implement. !
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Boolean functions

A Boolean function f(xi, ..., xn) € B, maps from FJ to F, - generally
represented by its algebraic normal form (ANF):

f(x1,. ., %n) = EB )\b(HX,‘bi)a

beFy  i=1

—
[y
~—

where A\p, € Fp, b= (bl, .. .,b,,) S Fg

The algebraic degree deg(f), is defined as maxpepg{wt(b) | Ap # 0},
where wt(b) denotes the Hamming weight of b.

e f is called an affine function when deg(f) = 1. If constant term is

equal to zero f is called a linear function. Any linear function on ]
is denoted by:

w Xy =wix1 P+ P wpXn, (2)

where w = (w1,...,wy) € F5 and X, = (x1,...,Xp).
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Example: f € B3

ANF : f(x1,x2,x3) = ap @ a1x1 ® axxo @ azx3
@ agxix2 @ asx1x3 D agxoX3

@ a7x1X2X3
If (ap, a1, ,a7) =(01110010), then
f(x1,x2,x3) = X1 B X2 B X3 D X2X3.
We have deg(f) = 2.
Linear functions:
Ux1,x0,x3) = a1x1 @ arxo @ azxs
Affine functions:

p(x1,x2,x3) = ag ® a1x1 B axxo P azx3
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100
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111
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Truth table and ANF correspondence

@ From ANF to truth table is easy. In other direction it can be verified
that,

f)= > JJa+x+a) ackFs.

alf(a)=1i=1

@ For the previous example we have
fla) =1« (a1, 2,a3) € {(0,0,1),(0,1,0),(1,0,0),(1,1,0)}
@ Then

f(x) = (1+x1)(1+x)x3+ (1+x1)x(l+x3) + x1(1 +x)(1+ x3)
+x12(l+x3) = ... = x1 + X2 + X3 + x2x3.

IDEA : Select odd number of vectors in support (say 2”1 — 1) and you
get maximal degree !
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Table : The truth tables of 3-variable affine functions

X1, X2, X3 f /o /1 /2 /3 /4 /5 /5 /7 /6 /{ /é /3/ /i /é /é /7/
000 ojojojojojojojojof1rj1j1j1rf1j1j1/|1
001 i1/0|1}j0f1|j0|1}j0O|1T|1|0|1|0]1]0O0|1]|0O
010 1,0/0(1f1|j0|0O}1|1T|)1|1(0|0]1]1|0]|0O
011 ojoj1j1{0|0}1}j1j0|1}j0|0O|1|1]0|O0]|1
100 i1/0|/0(O0OfO|1|1}1y1|)1|1(1|1]0]|0|O0]|0O
101 o(of1j{0(14140{1}j0f(1|j0j1(0|0]|1]0]1
110 1,0/0}j1f1|1|1}j0|0|1}|1|0|0]|]O]O|1]|1
111 o(of1j1j0f14y0|0}j1(1|0|0f10]|1]1]0

W2 [4]o]a]2]a]2]4]2]4 2][a]6]e6]%] 6]

The nonlinearity of a Boolean function f € B, denoted by Ny, is defined
as the distance to the set of all affine functions,

Ne= min (X € F2: £(X0) £ p(Xn)}, (3)
pEA(n)

where A(n) is the set of all affine functions on F3.
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Theoretical research versus cryptographically practical

@ For instance bent (highest nonlinearity) and semi-bent functions
deserve special attention.

o Classification, counting, explicit algebraic expressions for bent
functions (theoretical but also practical)

e Cryptographic drawbacks (at least in LFSR based schemes) are :
» Nonbalanced (outputting 2"/2=1 more zeros or ones for 2" output

values)
» Algebraic degree at most n/2

SOLUTION : Modify bent functions so that they are of optimal degree
and very high nonlinearity.
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Shannon's attack for linear transition ciphers

@ Set up the enciphering equations:

zp = f(So,Sl,...,szl)
zZ1 = fOL(So,Sl,...,szl)
Zy = fOLt(So,Sl,...,SS_l).

@ System of equations in S state variables of degree d = deg(f).

The number of terms is
d
S sd
< ~ —
() ~7

d . . . . .
@ Observe more than % bits and solve system using linearization (turn

3
. . . . d
nonlinear system to linear) in complexity (%) )
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Algebraic attacks preliminaries

@ Can we decrease the degree of the system ?

o If we can set up a true system of lower degree r < d the complexity
becomes smaller,
CANNCLAN
<7> . (W>

@ How do we decrease the degree of the system 7

@ What ciphers are vulnerable to this attack ?
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Algebraic Immunity: Given f € B, define
AN(f)={geB,|f g =0}
Any function g € AN(f) is called an annihilator of f. The algebraic

immunity, denoted by Al(f), of function f is the minimum degree of all
non-zero annihilators of f and f & 1.
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Annihilators of Boolean function

o Let f(X3,X2,X1) = X1 X2 + X2X3.

X3 ‘ X2 ‘ X1 H f(x) ‘ g(x) H

0[0]O 0 *
01011 0 *
o(1]0 0 *
0|11 1 0
1,010 0 *
1101 0 *
11110 1 0
1 (1)1 0 *

@ Assign “x" to get annihilator g, f(x)g(x) =0, of low degree !

@ For instance g(x) =1+ x, gives

f(x)g(x) = [xe(x1 + x3)][1 + x2] = x2(x1 + x3) + x2(x1 + x3) =0

Enes Pasalic (UP FAMNIT & IAM) Constructions of Cryptographic Functions
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Algebraic attacks- decreasing the degree of f

o ldea of attack: Find annihilator g of degree less than deg(f).
Observing z' =1,

f(x) =1= f(x)g(x") = g(x*) = go L*(s0,51,--.,55_1) = 0.
——

=0

@ Similarly for h € AN(1+ f) and f(x") =zt =0,

h(x*)(1+ f(x")) =0= ho L(sp,s1,...,55_1) = 0.

@ Solve a system of equations of degree deg(g) = deg(h) < deg(f).
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Fast algebraic attacks - Toyocrypt

e Toyocrypt uses LFSR of length 128 to generate z' = f(s'),

62
f(so0,...,5127) = s127 + E SiSq; + 510523532542
i=0
62
+  515250512518520523525526 528533541 542551553559 + H 5.
i=0

o Now T = (128) ~ 2!%* which gives attack Compl = pl243 _ 9372,

63
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Fast algebraic attacks - Toyocrypt

e Toyocrypt uses LFSR of length 128 to generate z' = f(s'),
62

f(so0,...,5127) = s127 + g SiSa; + 510523532542
i—0
62

+  515250512518520523525526 528533541 542551553559 + H 5.
i=0

o Now T =~ (‘%) ~ 2'2* which gives attack Compl = pl243 _ 9372,

@ But f(s)(1+ sp3) is of degree 3 | System f(s*)(1+ sp3) = z*(1 + s23).

Then T ~ (1§8) =218 and attack complexity 254,

e CRUCIAL : Existence of low degree g, h s.t. fg = h (here
deg(g) =1, deg(h) = 3)!
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Introduction to correlation immunity
@ Balanced Boolean functions in n variables are of degree < n — 1.

@ We might be interested in computing Pb(f(x) = x;) ! Consider the
function f(x) = x3 + x1x2 + x2x3.

[ s [ e [oa | F0) [ FO) £ |
0o[o[o0] o 0
ojo[1] o 1
ol1]0] 0 0
011 1 1
100 1 0
101 1 0
110 0 0
111 1 0

@ Same situation, unbalancedness, for f(x) + xo and f(x) + x3.
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Correlation attacks

length
sl
A
2
keystream
f: Fg -—>F, Z ] TEST

Correlated *

Iy LFSRi

@ Attack is performs by checking all states of LFSR1:

» Guess not correct : We get a random sequence
» Guess correct: Then z; @ x; is biased, more zeros than ones .

@ In previous example Pb{f(x) = x;} = 3/4, thus possible to run test.
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Example of correlation attacks

Secret key

\P - 1
T3 //{,/ 10110110110110110110110110
0 Ty

: 1
1 - A
' ST // /’E
| 1‘0‘1.{2/5 10100111010011101001110100
: ‘ rlx1§ 00111101011001000111101011
: 1100 :
o= [(ah) = w) B gz 10011011001011100111011111
J@) @ 10100110010010100000110100 « 16 zeros
i“ 011110101100106001111010110
/110"
wrong key
f@) @y 11100001111001101000001001
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Extended affine (EA) equivalence

@ The most important parameters (nonlinearity, degree and algebraic
properties) invariant under transformation

g(x)=f(xL+ b))+ cx+d,

where L is invertible binary n x n matrix; b,c € Fj and d € IF».

o Algebraic thickness - the sparsest ANF of a given function !
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Extended affine (EA) equivalence

@ The most important parameters (nonlinearity, degree and algebraic
properties) invariant under transformation

g(x)=f(xL+ b))+ cx+d,

where L is invertible binary n x n matrix; b,c € Fj and d € IF».

@ Algebraic thickness - the sparsest ANF of a given function !

EXAMPLE : f(x1,...,x5) = (x1 +1)(x2 +2) - - - (xn + 1) has 2" terms in
its ANF. Its (cryptographically useless) equivalent is g(x) = x1x2 - - - x, has
one term !!

PROBLEM Given f find its best affine equivalent with sparsest ANF !l
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Extended affine equivalence Il

e Since resiliency of degree t (balancedness of f(x) + ¢(x) with
wt(£(x)) < t) is not invariant under EA transformation easier to
design f for :

Z

Nonlinear filtering generator

@ No resiliency needed just balancedness of f !l
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Cryptographic functions with non-efficient implementation

o CARLET-FENG 2008 : Let n > 2 and « a primitive element of Fon.
Define f on Fan whose (balanced) support is

$={0,1,0,...,0%" -2}, f(x)=1<xE€S.

o f satisfies all of the cryptographic criteria (high degree and
nonlinearity, good algebraic properties) ...

@ But Carlet estimated that for n = 18 c.a. 40 000 transistors needed
for implementation !!

@ Need much more efficient implementation otherwise no practical use

of these functions (e.g. CARLET-FENG) , use compact block ciphers
instead !
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Efficient hardware implementation

@ Hard to expect that EA-equivalence would help here !

@ To resist algebraic attacks number of variables n > 16 approx. !

e A random Boolean function has in average 2"! terms in its ANF !l

@ Need some special classes with efficient implementation such as
Maiorana-McFarland class (concatenation of affine/linear functions)
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Basic ideas behind MM class

@ Any linear function ¢,(x) in n variables can be seen as "linear”
concatenation of some fixed affine couple £,(x) and 1+ £5(x) in p
variables.

@ Consider any linear function
ln(X1, ..., Xn) = a1x1 + @2x2 + ... + anXn.

B Cpa(xts s X)) [n1(x1, .-, Xa—1); an =0,
en(XI’ o 7Xn) N { gn—l(le see 7Xn—1)H1 +€n—1(X17 v 7Xn—1); ap = 1

I

where £p_1(x1,...,Xp—1) = a1x1 + ... + an—1Xxp—1. Proceed with
induction.

@ CONCLUSION: We can measure the distance of f(x) to /,(x) by
looking at subfunctions in smaller dimension.
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Maiorana-McFarland Construction

For any positive integers p, g such that n = p+ g, an MM function
f € B, is defined by

f(yanp):¢(yq)'Xp@g(Yq)a XPGFIQJ’ Yq 6Fg> (4)

where ¢ is any mapping from F3 to F5, g € B,.
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Maiorana-McFarland Construction

For any positive integers p, g such that n = p+ g, an MM function
f € B, is defined by

f(yanp):¢(Yq)'Xp@g(Yq)a XPGFIQJ’ quFg> (4)

where ¢ is any mapping from F3 to F5, g € B,.

e For any fixed Y, the function f is affine/linear (depending on g)
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Maiorana-McFarland Construction

For any positive integers p, g such that n = p+ g, an MM function
f € B, is defined by

f(Yq, Xp) = 0(Yq) - Xp @ g(Yq), Xp € F5, Yq € FY, (4)
where ¢ is any mapping from F3 to F5, g € B,.
e For any fixed Y, the function f is affine/linear (depending on g)

o If ¢ is injective then p > g and affine subfunctions in p variables are
distinct !
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Maiorana-McFarland Construction

For any positive integers p, g such that n = p+ g, an MM function
f € B, is defined by

F(Yq Xp) = d(Yq) - Xp @ g(Yy), X, €F5, Yy, €FJ, (4)

where ¢ is any mapping from F3 to F5, g € B,.

e For any fixed Y, the function f is affine/linear (depending on g)

o If ¢ is injective then p > g and affine subfunctions in p variables are
distinct !

@ Calculation of Hamming distance of f to any ¢, becomes easy
(injectivity implies either a single or no match with linear functions in
p variables)

e For a single match (if no match dy(f,¢,) =2""1)

du(f, €)= (29 —1)2P7 1 0 =21 —2p71
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Special case - bent functions

@ Defined for n = 2k even, bent functions achieve maximum
nonlinearity.

o Essentially, k = p = q and we concatenate all 2% linear functions in k
variables,

b(x) = LOX)ED (X[ - 16D (),
where E(i)(Xk) = ¢ . X, and ¢() is a binary k-bit representation of

integer i =0,1,...,2k -1,

@ In this case
dy(f, 0,) = 2"t £ 27271,
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Example of construction

X)) =32, 7; (6 ®x,)
® 1,1y, (1, @)
®Iy;£(xl @x,@x,@®x,)
®W vy, (5, ®x,)
@® 111_21_3 x,®x,®x,)
Dy, 0y, (x,®x, Dx,)
Dy, 1_3 (x,®x,@x,)
Dy, (D x,)

2

o Easy to get high nonlinearity; moderate alg. degree < g+1

@ Easy to construct t resilient functions - take linear functions with at
least t + 1 terms.
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Properties of the construction

Main drawbacks :
@ Linearity of subfunctions on relatively large variable space may give
rise to other attacks !
@ Relatively bad algebraic properties (resistance to (fast) algebraic
attacks)
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Properties of the construction

Main drawbacks :

@ Linearity of subfunctions on relatively large variable space may give
rise to other attacks !

@ Relatively bad algebraic properties (resistance to (fast) algebraic
attacks)
Main advantages : Good nonlinearity and efficient hardware
implementation. We implement linear functions in p variables, only smart
addressing of these needed.
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Properties of the construction

Main drawbacks :

@ Linearity of subfunctions on relatively large variable space may give
rise to other attacks !

@ Relatively bad algebraic properties (resistance to (fast) algebraic
attacks)

Main advantages : Good nonlinearity and efficient hardware
implementation. We implement linear functions in p variables, only smart
addressing of these needed.

EXAMPLE : For bent functions we implement 2"/2 linear functions using
one-to-one direct addressing.

MM class uses direct product F] x F5 = FJ to decompose the space Fj.
But we can decompose the space in many different ways !
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Generalized Maiorana-McFarland (GMM) Construction

Let for 1 <i<n-—1, E CF} and E! = E; x IF'Q’_" such that
n—1
U Ei/ = I3, (5)
i=1

andE,-’lﬂE,-’Z:@, 1<i<bhbh<n-—1

o Let X! = (x1,...,x;) € Fj and X/ = (Xit1,---.xn) € F37".

n—i

o Let ¢; be a mapping from E; to F]™' and g; € B; arbitrary.
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Generalized Maiorana-McFarland (GMM) Construction

Letfor1<i<n-—1, E C Fé and E/ = E; x F'z’_i such that
n—1
U Ei/ =F3, (5)
i=1

andE,-'lﬁE,-’Z:@, 1<i<bhbh<n-—1
o Let X! = (x1,...,%) €F} and X" . = (xit1,..., %) € F5~".
n—i

o Let ¢; be a mapping from E; to F]™' and g; € B; arbitrary.

@ A Boolean function f € B, in GMM class can be constructed as
follows:

F(Xn) = 0i(X/)- X, _; @ g(X]), ifX] €E, i=1...,n—1. (6)

@ Wei-Guo Zhang, Enes Pasalic, Generalized Maiorana-McFarland construction of
resilient Boolean functions with high nonlinearity and good algebraic properties,
IEEE Transactions on Information Theory, vol. 60, no. 10, pp. 6681-6695, 2014.
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Example: An 8-variable balanced GMM function

filX) =

‘ 11
I L1000 LIt
| 11001 ¢,  E, — F3

\ L1010
| L1011
1100
(Lol
L1110
(Lo
L1t

Enes Pasalic (UP FAMNIT & IAM)

E,CFS

Constructions of Cryptographic Functions

D DD DDDDD DD DS DD D DDDD

XA, (x5)

E“":‘Tsz (xg)

a6 8 1)
Exz :: (x5 ® xg)
XX, X%, (4 @ )

XX T K, (X5 @ xg)

X)X X3 X, (Xq)

X%, %%, (2, @ x3)

XX, X%, (@ ® x; )

XX, 5.5, (x,@ x,® x;)

XX, K30, (X:@ x,@ 1,9 x14)

X x,03%, (2@ x,® xg)

(¥, 9 x3)
(x)
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Theorem: Let n be even and E; =), for 1 </ <n/2—1. Let
0<m<n/2—-2 and (ap/2,---;an-m-1) € Fg/zfm be the binary vector

such that 27:_,;72_1 a;2" is maximal, satisfying at the same time,

n_zm_l a2 i (";i> > o, (7)

i=n/2 Jj=m+1

Let e=max{i|a; #0, n/2<i<n—m-—1}. Forn/2<i<e—1, set

|E'| . 0, ) ) if aj = 0 (8)
I Yima (), ifai=1.
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Theorem: Let n be even and E; =), for 1 <i<n/2—1. Let
0<m<n/2—-2 and (ap/2,---;an-m-1) € Fg/zfm be the binary vector
such that 27:—:/12—1 a;2" is maximal, satisfying at the same time,

n—m—1 ) n—i n—i
S (et X (")) 22 ™)
i=n/2 jemt1 N S

Let e=max{i|a; #0, n/2<i<n—m-—1}. Forn/2<i<e—1, set
0, if ai=20

&l = { > mit (n;i), if a; = 1. (8)

For n/2 <i<eandaj=1, let ¢; : E; — T; be injective mapping where

Ti={c|wt(c)>m+1, ccFy '} 9)

Then the function f € B, is a SAO m-resilient function with nonlinearity

e
Nf 2 2!171 o 2!7/271 o Z ai ) 2!17/'71 > 2!771 o 2n/2. (10)
i=n/2+1
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Construction of a GMM (10, 1, 8, 484) function (SAO)

2
_—
_—
E, FS
2°-Cl—Ct=26 E— 2
%, -
6X2-1=11 E, _— 2
E
1x272 E, |———

1024 bits =26 x 32+ 11 x 16 + 2 x 8 bits .

COMPARISON: For MM class injectivity of ¢ and resiliency imply that
g=4and p="6. Then, Nf =2""1 —2P~1 =480, and deg(f) <5 !
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Cryptographic properties of GMM class

Main advantages :
@ Better nonlinearity and degree than MM class
@ Much richer class - many decompositions of F7 !

o Efficient implementation unless the decomposition of [F5 is too
complex

Main drawbacks :

@ Relatively bad resistance against fast algebraic attacks (existence of
low degree g, hs.t. fg = h.
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Cryptographic properties of GMM class

Main advantages :
@ Better nonlinearity and degree than MM class
@ Much richer class - many decompositions of F7 !

o Efficient implementation unless the decomposition of [F5 is too
complex

Main drawbacks :

@ Relatively bad resistance against fast algebraic attacks (existence of
low degree g, hs.t. fg = h.

Trade-off necessary - DO NOT use too many n/2-variable linear
functions and get better resistance to (fast) algebraic attacks BUT
nonlinearity decreases !!!

@ Better understanding regarding fast algebraic attacks needed !
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Implementation results

Tx1

27

Affine
Function

Generator

{

-
x

ﬂ

f

S @ny Xn-1,7++1 %0)

| Input Variable Space (xy, Xn—1, ", X1, X0)

Design Total Area (Gates) | Clock Period (ns) | Clock Frequency (MHz)
10-variable 167 211 473.93
12-variable 409 2.63 380.23
16-variable 1538 3.59 278.55

Table : GMM Construction 2 ASIC Synthesis Results
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