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Setting

p is any odd prime number and m, n are positive integers

Fpn is the finite field of order pn

εp is a primitive p-th root of unity in C

Tr(α) = α+ αp + · · ·+ αpn−1
is the trace of α ∈ Fpn over Fp

f : Fpn → Fp is a p-ary (n, 1) function

F : Fpn → Fpm is a p-ary (n,m) function
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Setting

For a p-ary (n, 1) function f , the derivative of f at a ∈ Fpn is a map
defined as

Da f :Fpn → Fp

x 7−→ Da f(x) = f(x + a) − f(x), ∀x ∈ Fpn

For a p-ary (n,m) function F , the derivative of F at a ∈ Fpn is a
map defined as

DaF :Fpn → Fpm

x 7−→ DaF(x) = F(x + a) − F(x), ∀x ∈ Fpn
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Setting

For a p-ary (n, 1) function f , the Walsh transform of f at ω ∈ Fpn is
a map defined as

χ̂f :Fpn → C

ω 7−→ χ̂f (ω) =
∑

x∈Fpn

ε
f(x)−Tr(ωx)
p .

f is called a bent function if |̂χf (ω)| = p
n
2 for all ω ∈ Fpn

f is called an s-plateaued function if |̂χf (ω)| ∈
{
0, p

n+s
2

}
for all ω ∈ Fpn where 0 ≤ s ≤ n
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Setting

The sequence of the even power moments of the Walsh transform
of f

For any non negative integer i,

Si(f) =
∑
ω∈Fpn

|̂χf (ω)|
2i

In [Mesnager, 2014],
for every integer A and every non-negative integer i, the following
equation holds∑
ω∈Fpn

(
|̂χf (ω)|

2 − A
)2
|̂χf (ω)|

2i = Si+2(f) − 2ASi+1(f) + A2Si(f). (1)
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Part 1: Characterizations of s-plateaued f : Fpn → Fp

By Si(f) =
∑
ω∈Fpn |̂χf (ω)|

2i

Theorem (Mesnager, 2014)

f is s-plateaued ⇐⇒ Si(f) · Si(f) = Si+1(f) · Si−1(f) for i ≥ 2.

Theorem

f is s-plateaued ⇐⇒ Si(f) · Sj(f) = Si+1(f) · Sj−1(f) ∀i ≥ 1, j ≥ 2.
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Part 1: Characterizations of s-plateaued f : Fpn → Fp

By Si(f) =
∑
ω∈Fpn |̂χf (ω)|

2i

Theorem (Mesnager, 2014)

f is s-plateaued ⇐⇒ Si(f) · Si(f) = Si+1(f) · Si−1(f) for i ≥ 2.

Theorem

f is s-plateaued ⇐⇒ Si(f) · Sj(f) = Si+1(f) · Sj−1(f) ∀i ≥ 1, j ≥ 2.

Actually, they are equivalent. Proof?
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New characterizations of s-plateaued f : Fpn → Fp

Theorem

f is s-plateaued ⇐⇒ S2(f) = p3n+s and S3(f) = p4n+2s

Proof.

By (1) with A = pn+s and i = 0,∑
ω∈Fpn

(
|̂χf (ω)|

2 − pn+s
)2

= S2(f) − 2pn+sS1(f) + p2n+2s · S0(f)

= (pn − pn−s)(−pn+s)2

By (1) with A = pn+s and i = 1, S3(f) = p4n+2s .
Conversely, by (1) with A = pn+s and i = 1,∑

ω∈Fpn (|̂χf (ω)|
2 − pn+s)2 |̂χf (ω)|

2 = S3(f) − 2pn+sS2(f) + p2n+2sS1(f) = 0.

Corollary

If f is s-plateaued, then Si(f) = p(i+1)n+(i−1)s for i ≥ 1.

In particular, if f is bent, then Si(f) = p(i+1)n for i ≥ 0.

Sihem Mesnager, Ferruh Özbudak, Ahmet Sınak Results on characterizations of plateaued functions in p 9/23
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Characterizations of s-plateaued f : Fpn → Fp

Theorem
f is s-plateaued if and only if∑

a,b∈Fpn

ε
DbDa f(x)
p = θ ∀x ∈ Fpn (2)

with θ = pn+s . In particular, f is bent if and only if θ = pn for s = 0.

Sketch of the proof.
For all x ∈ Fpn ,

1
∑

a,b∈Fpn ε
f(x+a+b)−f(x+a)−f(x+b)
p = θ · ε

−f(x)
p

2 G1(x) =
∑

a1,b1∈Fpn ε
f(a1+b1−x)−f(a1)−f(b1)
p = θ · ε

−f(x)
p = G2(x)

For all ω ∈ Fpn ,

3 Ĝ1(ω) = Ĝ2(ω)

4 Ĝ1(ω) = χ̂f (−ω) · (−χ̂f )(ω) · (−χ̂f )(ω) and Ĝ2(ω) = θ · (−χ̂f )(ω)
5 Recall that (−χ̂f )(ω) = χ̂f (−ω)

6 χ̂f (−ω) · χ̂f (−ω) · χ̂f (−ω) = θ · χ̂f (−ω)

7 |̂χf (ω)|
2 ∈ {0, θ}

Sihem Mesnager, Ferruh Özbudak, Ahmet Sınak Results on characterizations of plateaued functions in p 10/23
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4 Ĝ1(ω) = χ̂f (−ω) · (−χ̂f )(ω) · (−χ̂f )(ω) and Ĝ2(ω) = θ · (−χ̂f )(ω)
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Sihem Mesnager, Ferruh Özbudak, Ahmet Sınak Results on characterizations of plateaued functions in p 10/23



Outline Basic tools Part 1: Characterizations of f : Fpn → Fp Part 2:Characterizations of F : Fpn → Fpm Conclusion

Characterizations of s-plateaued f : Fpn → Fp

Theorem
f is s-plateaued if and only if∑

a,b∈Fpn

ε
DbDa f(x)
p = θ ∀x ∈ Fpn (2)

with θ = pn+s . In particular, f is bent if and only if θ = pn for s = 0.

Sketch of the proof.
For all x ∈ Fpn ,

1
∑

a,b∈Fpn ε
f(x+a+b)−f(x+a)−f(x+b)
p = θ · ε

−f(x)
p

2 G1(x) =
∑

a1,b1∈Fpn ε
f(a1+b1−x)−f(a1)−f(b1)
p = θ · ε

−f(x)
p = G2(x)

For all ω ∈ Fpn ,
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ε
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Theorem (Mesnager, 2014)
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S2(f) = p3n+s .
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Examples of s-plateaued f : Fpn → Fp

For p, n ≥ 2 and s, there exist p-ary s-plateaued functions.

Example

For p = 3, n = 5 and 0 ≤ s ≤ 4,

f1(x) = Tr(x2 + x4 + 2x10) is 0-plateaued and S2(f1) = 315

f2(x) = Tr(x2 + x4 + x10) is 1-plateaued and S2(f2) = 316

f3(x) = Tr(ξx2 + x4 + 2x10) is 2-plateaued and S2(f3) = 317

f4(x) = Tr(ξ2x2 + 2x4 + ξ28x10) is 3-plateaued, S2(f4) = 318

where ξ is a primitive element of F35 with ξ5 + 2ξ + 1 = 0

f5(x) = Tr(x2 + 2x4 + 2x10) is the 4-plateaued, S2(f5) = 319
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Characterizations of vectorial bent F : Fpn → Fpm

Part 2: The vectorial function F : Fpn → Fpm

Recall that, for a vectorial function F , fλ from Fpn to Fp for every
λ ∈ F?pm is defined as

fλ(x) = Trm
1 (λF(x))

for all x ∈ Fpn . Then F is called vectorial bent if fλ is bent for all
λ ∈ F?pm .
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Characterizations of vectorial bent F : Fpn → Fpm

In [Nyberg, 1991], F is a vectorial bent function if and only if
DaF is balanced for all a ∈ F?pn .

In [Mesnager, 2014], F is a vectorial bent function if and only if

N(F) = #
{
(a, b , x) ∈ F3

pn |DbDaF(x) = 0
}
= p2n−m(pn−1)+p2n.

Without using bentness of F ,

DaF is balanced for all a ∈ F?pn ⇐⇒ N(F) = p2n−m(pn − 1) + p2n.
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Characterizations of vectorial bent F : Fpn → Fpm

For x1, x2, . . . , xm such that x1 + x2 + · · ·+ xm = n, then we have

x2
1 + x2

2 + · · ·+ x2
m ≥

n2

m
.

The “ ≥ ” becomes “ = ” if and only if x1 = x2 = · · · = xm.

Lemma

Let G be a vectorial function from Fpn to Fpm . Then

#
{
(x1, x2) ∈ F

2
pn : G(x1) = G(x2)

}
≥ p2n−m.

The “ ≥ ” becomes “ = ” if and only if G is balanced.

Proof?
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Characterizations of vectorial bent F : Fpn → Fpm

Proposition

DaF is balanced ∀a ∈ F?pn ⇐⇒ N(F) = p2n−m(pn − 1) + p2n

where N(F) = #
{
(a, b , x) ∈ F3

pn |DbDaF(x) = 0
}
.

Proof.

Notice that DbDaF(x) = 0 if and only if

DaF(x) = DaF(x + b). (3)

For a = 0, we have #
{
(0, b , x) ∈ F3

pn |DbDaF(x) = 0
}
= p2n.

For a , 0, by previous lemma, the number of pairs (b , x) ∈ F2
pn

satisfying (3) is equal to p2n−m if and only if DaF is balanced.

�
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Sihem Mesnager, Ferruh Özbudak, Ahmet Sınak Results on characterizations of plateaued functions in p 16/23



Outline Basic tools Part 1: Characterizations of f : Fpn → Fp Part 2:Characterizations of F : Fpn → Fpm Conclusion

Characterizations of vectorial bent F : Fpn → Fpm

Proposition

DaF is balanced ∀a ∈ F?pn ⇐⇒ N(F) = p2n−m(pn − 1) + p2n

where N(F) = #
{
(a, b , x) ∈ F3

pn |DbDaF(x) = 0
}
.

Proof.

Notice that DbDaF(x) = 0 if and only if

DaF(x) = DaF(x + b). (3)

For a = 0, we have #
{
(0, b , x) ∈ F3

pn |DbDaF(x) = 0
}
= p2n.

For a , 0, by previous lemma, the number of pairs (b , x) ∈ F2
pn

satisfying (3) is equal to p2n−m if and only if DaF is balanced.

�
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Characterizations of vectorial s-plateaued F : Fpn → Fpm

Definition

For a vectorial function F , fλ from Fpn to Fp for every λ ∈ F?pm is
defined as

fλ(x) = Trm
1 (λF(x))

for all x ∈ Fpn . Then

F is called vectorial plateaued if fλ is plateaued for all λ ∈ F?pm .

F is called vectorial s-plateaued if fλ is s-plateaued with the
same amplitude s for all λ ∈ F?pm .

The vectorial plateaued functions are strictly more general than the
vectorial s-plateaued function for any s. Example
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Characterizations of vectorial s-plateaued F : Fpn → Fpm

Theorem

F is a vectorial s-plateaued function if and only if∑
λ∈F?

pm

S2(fλ) = p3n+s(pm − 1) and
∑
λ∈F?

pm

S3(fλ) = p4n+2s(pm − 1). (4)

Proof.
It is obvious that (4) holds.
Conversely, by (1) with A = pn+s and i = 1, for all λ ∈ F?pm

Dλ =
∑
ω∈Fpn

(|̂χfλ(ω)|
2−pn+s)2 |̂χfλ(ω)|

2 = S3(fλ)−2pn+sS2(fλ)+p2(n+s)S1(fλ).

Then by (4),
∑
λ∈F?

pm
Dλ = (pm − 1) · (p4n+2s − 2p4n+2s + p4n+2s) = 0.

Finally, since Dλ ≥ 0, we have Dλ = 0 for every λ ∈ F?pm .
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Characterizations of vectorial s-plateaued F : Fpn → Fpm

Theorem (Mesnager, 2014)∑
λ∈F?

pm

S2(fλ) = pn+m
N(F) − p4n

where N(F) = #
{
(a, b , x) ∈ F3

pn |DbDaF(x) = 0
}
.

Theorem
F is vectorial s-plateaued if and only if

N(F) = p3n−m + p2n+s − p2n+s−m

where N(F) = #
{
(a, b , x) ∈ F3

pn |DbDaF(x) = 0
}

and
S3(fλ) = p4n+2s for all λ ∈ F?pm .
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Examples of vectorial s-plateaued F : Fpn → Fpm

For each odd prime p, integers m and n, there exist vectorial p-ary
s-plateaued functions.

Example

For p = 3, m = 2 and n = 6

f1(x) = Tr6
2(x

2 + x10) is the 0-plateaued function and

f2(x) = Tr6
2(x

2 + 2x10) is the 1-plateaued function.
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Conclusion

Further results on characterizations of bent and s-plateaued
functions

Provided new characterizations of s-plateaued functions

Presented a direct proof of the balancedness of DaF(x) and
the number of zeros of DbDaF(x)

Introduced the vectorial s-plateaued functions and their
characterizations
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Thanks for your attention !
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Proof of result

Proof.
Assume i < j and fix i ≥ 2, and proceed by induction on j.

Let j = i + 3. We have

Si+1(f) · Si+1(f) = Si+2(f) · Si(f),

Si+2(f) · Si+2(f) = Si+3(f) · Si+1(f).

It follows that Si(f) · Si+3(f) = Si+1(f) · Si+2(f).

For j = i + k , assume that it holds.

For j = i + k + 1, Si(f) · Si+k+1(f) = Si+1(f) · Si+k (f).

The converse is obvious for j = i.

�
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Proof of Lemma

Proof.

Let Aj = {x ∈ Fpn : G(x) = yj ∈ Fpm } and zj = |Aj | for all j.

Then

|
{
(x1, x2) ∈ F

2
pn : G(x1) = G(x2)

}
| =

∣∣∣∣ ⋃pm

j=1

{
(x1, x2) ∈ F

2
pn : x1, x2 ∈ Aj

}∣∣∣∣
=

∑pm

j=1 |Aj |
2 =

∑pm

j=1 z2
j .

By previous fact, for
∑pm

j=1 zj = pn and zj ≥ 0, we have∑pm

j=1 z2
j ≥ p2n−m.

G is balanced if and only if z1 = z2 = · · · = zpm .

�
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Example of vectorial plateaued function

Example
For any prime p,

f1 is the quadratic p-ary s1-plateaued function from Fp4 to Fp

f2 is the quadratic p-ary s2-plateaued function from Fp4 to Fp

with s1 , s2. For any θ ∈ Fp2 \ Fp , a function F given as

F(x) = f1(x) + θf2(x)

is the vectorial plateaued function from Fp4 to Fp2 but it is not the
vectorial s-plateaued function for any integer s with 0 ≤ s ≤ r − 1.
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