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Ceşmelioğlu, McGuire,
Meidl (2012)

relative difference set
P., Zhou (2015)

degree-diameter problem

Sheekey (2015),
also Özbudak
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Ceşmelioğlu, McGuire,
Meidl (2012)

relative difference set
P., Zhou (2015)

degree-diameter problem

Sheekey (2015),
also Özbudak
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Definition

Let G be an Abelian group, D ⊆ G . Then D is a difference set if
the list of non-zero differences d − d ′ has some nice property, for
instance

. . . every element occurs the same number λ of times.

. . . every element occurs λ or µ times.

. . . every element outside a certain subgroup occurs λ times.

. . .

. . .

Parameters: |G |, |D|, λ, . . ., usually some trivial necessary
conditions.
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Examples with λ = 1

{0, 1, 3} ⊂ Z7

{0, 1, 3, 9} ⊂ Z13

{3, 6, 7, 12, 14} ⊂ Z21
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Some tendencies ...

I The more cyclic a group is, the less difference sets it has.

I Small λ, less difference sets.

I If there are some examples with certain parameters, there are
usually many.
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Incidence structures: The geometry world

From any difference set D we construct an incidence structure

I Points are elements in G

I Blocks are translates D + g of D

Important observation:
g − h has λ difference representations if and only if g and h are on
λ blocks.
Difference sets with λ = 1 correspond to projective planes:

I q2 + q + 1 points

I q2 + q + 1 lines

I two different points are on exactly one line.

Prime Power Conjecture: q must be a prime power!
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Remark about projective planes

I q = p prime: Only one example? open

I q = pf with f ≥ 2: Many, many examples. known

Remark about cyclic difference set with λ = 1:
Only one known example! Supports the “tendency”

Construction: Elements of trace 0 in multiplicative group of Fq3

modulo multiplicative subgroup of order q − 1.
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Another representation of a plane

Vector space F2f
p , collection of pf + 1 subspaces of dimension f

with pairwise trivial intersection. spread

Example

1-dimensional subspaces in F2
q with q = pf .

Corresponding projective plane:

I Points are elements in F2f
p

I lines are cosets of subspaces.

There are many, many examples (translation planes).

Remark: Not really a difference set construction.
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Special translation planes, but p odd

Some spreads have a nice construction:

Example

f (x) = x2 on Fpf then La : x 7→ f (x + a)− f (x)− f (a) = 2xa
generates subspaces (spread)

{(x ,La(x)) : x ∈ Fpf }

plus {(0, x) : x ∈ Fpf }
When are the subspaces “disjoint”?
Condition:

La are linear and bijective.

Note: The La form a vector space of linear invertible mappings!
This is not true for general spreads.
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Difference set representation, Coulter, Henderson
(2008)

If f describes a spread, then

{(x , f (x) : x ∈ Fpf } ⊂ Fpf × Fpf

is a difference set: Every element not in {0} × Fpf has exactly
λ = 1 difference representation.

Example

{(0, 0), (1, 1), (2, 1)} ⊂ Z3 × Z3

There are many examples.
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Why not p = 2?

x 7→ f (x + a)− f (x)

cannot be bijective if p = 2.
But there are spreads and also vector spaces of invertible matrices.
Actually, there are many, many, more than for p odd (Kantor
2003)
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Two important definitions

A function f : Fq → Fq is planar (PN), if

x 7→ f (x + a)− f (x)

is a permutation for all a 6= 0.

A function f : Fq → Fq is almost perfect nonlinear (APN) if

x 7→ f (x + a)− f (x)

is 2 to 1 for all a 6= 0 and q is even.
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Monomial APN’s xd on F2n

d Condition

Gold 2i + 1 gcd(i , n) = 1

Kasami 22i − 2i + 1 gcd(i , n) = 1

Welch 2t + 3 n = 2t + 1

Niho 2t + 2
t
2 − 1, t even n = 2t + 1

2t + 2
3t+1
2 − 1, t odd

inverse function 22t − 2 n = 2t + 1

Dobbertin 24t + 23t + 22t + 2t − 1 n = 5t
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Some infinite families: q = pn

Example (p odd)

xpk+1 is planar on Fpn if n/ gcd(n, k) is odd.

Example (p = 2)

x2k+1 is APN on F2n if gcd(n, k) = 1.

Example (p = 3, Coulter, Matthews 1997;
Ding,Yuan 2006)

x10 ± x6 − x2 is planar on F3n .

Example (p = 2, Budaghyan, Carlet, Leander 2009)

x3 + tr(x9) is APN on F2n .

Example (p = 2)

x (−1) is APN on Fn
2 if n is odd.
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quadratic vs. non-quadratic

f is called a Dembowski-Ostrom polynomial or quadratic if

f (x + a)− f (x)

is affine:

f (x) =
∑
i ,j ,i 6=j

αi ,jx
pi+pj +

∑
j

βjx
pj + γ.

Linear and constant terms are not important!

Until 2006, only few non-quadratic APN’s were known, and only
the classical quadratic monomials. This changed dramatically in
2006 Edel, P., Kyureghyan; Bierbrauer; Dillon, where
many new quadratic APN’s were constructed.
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The quadratic case

Let f (x) =
∑

i ,j αi ,jx
pi+pj . This gives a vector space of bilinear

forms Fpf × Fpf → Fp:

(x , y) 7→ f (x + y)− f (x)− f (y)

and apply projections onto Fp.

Theorem
f quadratic and planar exists iff there is a vector space consisting
of symmetric matrices of full rank.

Geometers call these symplectic semifield spreads.
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The geometric approach

Geometers searched for these objects and found many, and even
more if p = 2, but the matrices are not alternating, hence cannot
be constructed from a function f .

Diagonal is needed to get a vector space of symmetric invertible
matrices, in this way Z4 enters the arena.

Functions which describe these spreads satisfy

x 7→ f (x + a) + f (x) + a · x

are bijective. (Zhou 2013, also Horadam)
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APN in terms of alternating matrices

Let’s do almost the best and try to find a vector space of
alternating matrices of large ranks: Then they can be constructed
from a mapping f :

Theorem
f quadratic and APN iff there is a vector space of alternating

matrices minimizing the sum of the 2co-rank.

Problem 1
Can we use this picture to construct more quadratic APN
functions?
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Yu, Wang, Li 2012/2014

Change some positions of the alternating matrices carefully. Yu,
Wang, Li constructed many new quadratic APN functions for
n = 7, 8.

Problem 2
Find families in this way!
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Component functions

The vector space generated here is the vector space of all
component functions of f .

Try to build an APN function from component functions. In the
quadratic case: Use alternating matrices.

Suggestion by Claude Carlet: Plateaued functions. They have
the same Walsh spectrum as quadratic functions.

Important Remark: All infinite families of APN functions so far
are constructed directly, given a polynomial, although in geometry
it seems easier to construct spreads!
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The “trans-characteristic” construction

There are quite a few infinite families of APN functions and of
planar functions, sometimes with similar proofs in even and odd
characteristic:
A very interesting example:

x2s+1 + αx2k+22k+s

is APN on F23n Budaghyan, Carlet, Leander, Felke
(2006) and

xps+1 + αxpk+22k+s

is planar on Fp3n . Zha, Kyureghyan, Wang (2009)
α must be choosen properly.
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Question

Problem 3
Is there perhaps a better understanding of this construction in
terms of the component functions and their associated symmetric
matrices (in the planar case) or alternating matrices (in the APN
case).
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An important result by Menichetti

Theorem
A planar function on Fpn with n prime is equivalent to xpi+1 if n is
a prime and p sufficiently large.

The result by Zha, Kyureghyan, Wang shows that this cannot
be true for composite (odd!) numbers. If n is even, it seems easier
to find APN/PN functions using bivariate methods Fq2 = F 2

q

(APN: Carlet (2011); planar P. Zhou (2013)).
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My favorite problem

Finding new examples of quadratic planar or APN functions seems
to be less interesting now.

Problem 4
Show that

I there is no polynomial gp such that the number of (quadratic)
planar or APN functions on Fn

p is smaller than gp(n) for all n.

I Show that the number of APN functions grows exponentially
in n (no Menichetti bound).
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Construction method: Switching or Projection

Theorem (Budaghyan, Carlet, Leander (2009))

x3 + tr(x9)

is APN.

Theorem (Göloglu (2015))

x2k+1 + [trnm(x)]2
k+1

is APN on F22m if gcd k, 2m = 1 and m is even.
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The BIG open problem

Brwoning, Dillon, McQuistan, Wolfe (2009) found an
APN permutation in F26 . They used the APN
x 7→ x3 + x10 + αx24.

Problem 5
Are there other examples of APN permutations in F2n if n is even?
It is easy to find APN permutations if n is odd.

Recently, many constructions of “almost APN” permutations with
n even (differentially 4-uniform) have been constructed.
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Walsh spectrum
In the quadratic case, the ranks of x 7→ f (x + y)− f (x)− f (y)
determine the Walsh spectrum of f . Which rank distributions are
possible?

More generally (including non-quadratic case): Determine

{∗
∑
x ,y

(−1)tr(αx+βf (x)) : α, β ∈ F2n , β 6= 0 ∗}.

Result

I f quadratic and n odd: Walsh spectrum is known (almost
bent functions).

I n even: Walsh spectrum is not known, even for quadratic
APN.

If n is even, only one quadratic APN is known with n even and not
5-valued spectrum.
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Which Walsh spectra

Problem 6
Determine the possible Walsh spectra of APN functions
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Composing two functions

Theorem (Weng, Zeng (2012))

If π : Fq → Fq is injective on squares and π(0) = 0, then
f (x) = π(x2) is planar provided that it is Dembowski-Ostrom
(quadratic).

Proof.
x2 is planar, π((x + a)2)− π(x2) = 0 has at most one solution,
which is sufficient since π(x2) is quadratic (which means
π((x + a)2)− π(x2) is affine).

Example

x5 ± x3 − x is permutation on F3n if n = 2 or n odd. Hence
x10 ± x6 − x2 is planar.
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The APN analogue, 2014

Theorem (Carlet, Gong, Tan (2015))

If π : Fq → Fq is injective on cubes and π(0) = 0, then
f (x) = π(x3) is APN provided that it is Dembowski-Ostrom
(quadratic).

Example

x + tr(x3) is permutation on F2n if n is even. Hence x3 + tr(x9) is
planar.

Problem 7
Exploit this: Composing permutation polynomial with x2 or x3.
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One sporadic non-quadratic APN

Edel, P. 2009 found some u such that

x3 + u17(x17 + x18 + x20 + x24) +
u14(tr(u52x3 + u6x5 + u19x7 + u28x11 + u2x13) +
tr82((u2x)9) + tr42(x21))

in F26 is APN, where

x3 + u17(x17 + x18 + x20 + x24)

is APN (switching)
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One family of non-quadratic planar functions

Theorem (Coulter, Matthews 1997)

In F3n , the mapping
x (3a+1)/2

with gcd(a, n) = 1, a odd, is planar.

Problem 8
Find more non-quadratic planar or APN mappings.
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