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S-box Construction Techniques

• Pseudo-random Generation

• Algebraic Constructions

• Heuristic Approaches
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Pseudo-random Generation

• S-box entries are generated from a table of random numbers.

• Test the S-box for suitability with respect to a target set of
cryptographic criteria.

• Unproductive as the size n of the input space increases:

• Trade-off between cryptographic criteria.

• Small number of good S-boxes among all in the search space.
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Algebraic Constructions

• Rely on proven mathematical principles. The AES S-box [5].

• Popular as S-boxes obtained are known to be optimal with
respect to most cryptographic criteria.

• Typically, do not produce a great number of S-boxes.

• Simple algebraic structure. Affine equivalent.

• Potential source for future security concerns if any of these
S-boxes appears to be vulnerable to algebraic attacks [4].
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Heuristic Approaches

• Based on evolutionary searching.

• A few S-boxes are iteratively improved with respect to one or
more cryptographic properties until:

• some reasonable number of iterations or execution time is
reached.

• some chosen in advance specific threshold values for these
properties are achieved.

• Produce a great number of non-optimal S-boxes.

• Include: Hill Climbing Method [13, 14], Simulated Annealing
Method [3], Genetic Algorithms [8, 19], etc.
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S-box Target Set of Cryptographic Criteria

• Nonlinearity

• Minimal Algebraic Degree

• Differential Uniformity

• Autocorrelation
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Nonlinearity

For better resistance to Linear Cryptanalysis [12], the nonlinearity
NS of an (n × n) bijective S-box S should be maximized.

m

The largest non-trivial value of S-box Linear Approximation Table,
denoted by LATS , should be minimized.

m

The minimal nonlinearity among all nonlinearities of component
Boolean functions of the S-box should be maximized. That is:

NS = min
v∈Bn\{0}

NvS −→ max .
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Minimal Algebraic Degree

For better resistance to Linear Cryptanalysis [12], Low Order
Approximation Attacks [15], Higher-order Differential Attacks [11],
Interpolation Attack [9] and Algebraic Attacks [4], the minimal
algebraic degree of an (n × n) bijective S-box S should be high.

m

The minimal algebraic degree among all the algebraic degrees of
component Boolean functions of the S-box should be maximized:

deg(S) = min
v∈Bn\{0}

deg(vS) −→ max , where

where deg(vS) is the number of variables of the largest product
term of ANFvS having a non-zero coefficient.
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Differential Uniformity

For better resistance to Differential Cryptanalysis [1], differential
uniformity δ of an (n × n) bijective S-box S should be minimized.

m

The largest non-trivial value of the S-box Difference Distribution
Table, denoted by DDTS , should be minimized. In other words:

δ = max
α∈Bn\{0}

max
β∈Bn

|{x ∈ Bn|S(x)⊕ S(x ⊕ α) = β}| −→ min.

If δ = 2, then the S-box is referred to as an APN S-box.
Existence of APN permutations for even n > 6 is an open problem.
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Autocorrelation

In order to improve the Avalanche Effect [6] of the cipher, the
largest non-trivial absolute autocorrelation value of of an (n × n)
bijective S-box S , denoted by AC (S)max , should be minimized.

m

The maximal non-trivial absolute autocorrelation value among all
absolute autocorrelation values (absolute indicators) of the S-box

component Boolean functions should be minimized. In other words:

AC (S)max = max
v∈Bn\{0}

ACmax(vS) −→ min.
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Known Best Results Obtained

Table: Best (8× 8) bijective S-boxes generated

Generation methods/properties NS deg(S) AC (S)max δ

Pseudo-random Generation [13, 14] 98 - - -

Finite Field Inversion [16] 112 7 32 4
Hill Climbing Method [13] 100 - - -

Genetic Alg/Hill Climbing [14] 100 - - -

Simulated Annealing Method [3] 102 - 80 -

Special Genetic Algorithm [19] 104 - - -

Tweaking Method [7] 106 7 56 6

Gradient Descent Method [10] 104 7 80 8

4-uniform Perm. Method [17, 18] 98 - - 4

Reversed Genetic Algorithm [8] 110 7 40 4

Reversed Genetic Algorithm [8] 112 7 32 6
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Main Goal and Basic Idea

• Obtain by some heuristic a variety of (8× 8) bijective, affine
non-equivalent S-boxes with cryptographic properties close to
those of the finite field inversion-based S-boxes and with far
more complex algebraic structure.

• Hill Climbing Method [13] or Simulated Annealing Method [3]
- productive but ineffective just by themselves.

• Genetic Algorithm
• Classic Genetic Algorithm, based on the traditional

”climbing-up” approach [19].

• Special Genetic Algorithm, based on the reverse ”skiing-down”
approach - Reversed Genetic Algorithm [8].

• Try something different - why not an Immune Algorithm?
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Artificial Immune Systems
(Clonal Selection Algorithms)

• Inspired by the process and mechanisms of the biological
immune system.

• Work with only one candidate solution, corresponding to the
most appropriate type of general immune cells (lymphocytes)
that will fight a specific pathogen.

• Candidate solution - subject to:
• proliferation.
• somatic hypermutation.
• selection.
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Algorithm Description

STEP 1 (Initialization)

• Define an integer n.
• Generate a random (n × n) bijective S-box S0.

STEP 2 (Initial selection)

• Start the MHCM with S0 as an input.
• Obtain S = MHCM(S0) - the (n × n) bijective

S-box of the lowest cost: cost(S) −→ min

STEP 3 (Somatic hypermutation)

• Twice apply mutation1(·) with S as an input:
S1 = mutation1(S) and S2 = mutation1(S).

• Twice apply mutation2(·) with S as an input:
S3 = mutation2(S) and S4 = mutation2(S).

• Obtain four different (n × n) bijective S-boxes
S1, S2, S3 and S4.
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Algorithm Description

STEP 4 (Selection)

• Start MHCM with each of S1, S2, S3 and S4.
• Obtain low-cost S-boxes S ′

1, S ′
2, S ′

3 and S ′
4:

S ′
1 = MHCM(S1), S ′

2 = MHCM(S2),
S ′
3 = MHCM(S3) and S ′

4 = MHCM(S4).
• Compare the costs of S ′

1, S ′
2, S ′

3 and S ′
4, and

set S ′ to be the S-box of the lowest cost.

STEP 5 (Stopping criterion)

• If some chosen in advance threshold number of
iterations or execution time is reached, STOP.

• Otherwise, set S to S ′ and go to step 3.
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Algorithm Description

• cost(S) = cost1(S).cost2(S).cost3(S), where

• cost1(S) =
∑

c<d∈Bn\{0}
∑
ω∈Bn | |F̂cS(ω)|3 − |F̂dS(ω)|3 |

7
.

• cost2(S) =
∑

c∈Bn\{0}
∑
ω∈Bn |F̂cS(ω)− 21|7, [3, 19].

• cost3(S) =
∑
δ11 6=δij∈DDTS

(δij − 1)2.(δij − 2)2.(δij − 4)2.

• mutation1(S) - swap 2 neighbouring elements of S at
positions p − 1 and p, where p ∈ [2, 2n] is chosen at random.

• mutation2(S) - swap q neighbouring elements of S at position
p, where q is chosen at random in [2, 8] and p is chosen at
random accordingly.
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Experimental Results (n = 8)

Generation methods/properties NS deg(S) AC (S)max δ

Pseudo-random Generation [13, 14] 98 - - -

Finite Field Inversion [16] 112 7 32 4
Hill Climbing Method [13] 100 - - -

Genetic Alg/Hill Climbing [14] 100 - - -

Simulated Annealing Method [3] 102 - 80 -

Special Genetic Algorithm [19] 104 - - -

Tweaking Method [7] 106 7 56 6

Gradient Descent Method [10] 104 7 80 8

4-uniform Perm. Method [17, 18] 98 - - 4

Reversed Genetic Algorithm [8] 110 7 40 4

Reversed Genetic Algorithm [8] 112 7 32 6

Special Immune Algorithm 104 7 88 6
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Conclusion

The presented special immune algorithm:

• is a new heuristic ”climbing-up” approach for bijective S-box
generation.

• is able to produce large sets of affine inequivalent bijective
S-boxes of high nonlinearity and low differential uniformity.

• has succeeded to narrow the distance to the finite field
inversion-based S-boxes with respect to nonlinearity and
differential uniformity.

• will provide an alternative in case some new, more powerful,
algebraic attacks against the AES-type of S-boxes appear.

Finite field inversion-based S-boxes remain the optimal found with
respect to the target set of criteria but heuristics are catching up.
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Future work

The work provided can be extended in several future directions:

• Apply some changes in the number of the mutation functions
or in the functions themselves so as (8× 8) bijective S-boxes
with N > 104 and δ = 4 to be produced. At least, from [8],
we know that such S-boxes exist.

• Apply some changes in the cost function or in the mutation
functions so as (6× 6) APN permutations, non-equivalent to
the one in [2], to be searched for.

• Apply some changes in the cost or mutation functions so as
(8× 8) bijective S-boxes with N > 112 or δ = 2 to be
searched for (open problems).
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Thank you!
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