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Outline

In this paper is presented the first external analysis of the
authenticated cipher MORUS.

The following new observations are reported:

(1) distinguisher with probability 1 in a nonce-reuse
scenario,

(2) differential biases in the words of the state after
initialization and

(3) collision on the StateUpdate function of MORUS.

This results do not threaten the security of the scheme.
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Introduction

CAESAR - Competition for Authenticated Encryption:
Security, Applicability, and Robustness

Announced in 2013

Initiated by the University of Illinois at Chicago, USA

Supported by the US National Institute of Standards and
Technology (NIST)

The goal of CAESAR - to select algorithm/s that can
ensure both confidentiality and integrity within a single
primitive

56 First-round candidates

29 Second-round candidates
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Introduction

MORUS - one of the Second-round candidates

a very promising design - both efficient and secure

Idea:

WG4 Meeting on Authenticated Encryption,
COST CryptoAction IC1306
”Cryptography for Secure Digital Interaction”,
co-located with Eurocrypt 2015
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Description of MORUS



Description of MORUS

Table: Notation.

Symbol Meaning

⊕ Bit-wise exclusive OR
∧ Bit-wise AND
|| Concatenation
≪ Bit rotation to the left
≫ Bit rotation to the right

b(n) A sequence of n binary digits b ∈ {0, 1}
|X| Length of the bit string X (in bits)

x Negation of all bits of x i.e. x = x⊕ 1(n)

Rotl xxx yy(x, b) Divide the xxx-bit block x into 4 yy-bit words
and rotate each word left by b bits. Example:
Rotl 128 32(x, b) is used in MORUS-640 and
Rotl 256 64(x, b) is used in MORUS-1280.

Rotr xxx yy(x, b) Analogous to Rotl xxx yy(x, b) with a right rotation
LSB, MSB Least Significant Bit, Most Significant Bit

IV Initialization Vector (Nonce)
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Description of MORUS

Bitwise operations:
bit shift, AND and XOR

The size of the internal state:
640 for MORUS-640 or 1280 bits for MORUS-1280

Supported keys:
128 and 256 bit keys loaded into the input state together
with a public 128 bit IV and 3 specified constants

The main building block:
The state update function StateUpdate(S,M), where S is
the state, and M is a message block with length |S|/5
This function consists of 5 rounds with similar operations
In each round, only two state elements are modified:

one with left rotation with coefficients wi (i ∈ {0, 1, 2, 3, 4})
other with Rotl xxx yy operation with coefficients bi,
(i ∈ {0, 1, 2, 3, 4}).
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Description of MORUS

Operates in four phases:
(1) Initialization

five state elements are initialized (IV , K, 1(128), const0 and
const1)
the state is updated by 16 applications of StateUpdate
the result is XOR-ed with the key K

(2) Processing of associated data

the associated data AD is processed using StateUpdate

(3) Encryption

the plaintext P is encrypted in blocks of 128 bits

(4) Finalization

the authentication tag is generated by 8 applications of
StateUpdate
the output is a ciphertext together with an authentication
tag of size at most 128 bits
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Distinguisher



Distinguisher on MORUS-640 in a nonce-reuse scenario

|AD| = 128, P consist of a single 128-bit block M

S0 = (s0, s1, s2, s3, s4) - the output of the init. phase

the output after the second phase is expressed as:

S1 = (x0, x1, x2, x3, x4) = StateUpdate(S0,AD) , (1)

the output of the third phase is C and the state S2:

C = M ⊕ x0 ⊕ (x1 ≪ 96)⊕ (x2 ∧ x3) , (2)

S2 = (z0, z1, z2, z3, z4) = StateUpdate(S1,M) (3)

in the final phase T is obtained as:
1 tmp = z3 ⊕ (adlen || msglen)
2 z4 = z4 ⊕ z0
3 For i = 2 to 9 do Si+1 = StateUpdate(Si, tmp)
4 T = ⊕4

i=1 S10
i
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Distinguisher on MORUS-640 in a nonce-reuse scenario

Theorem

Let S0 = (s0, s1, s2, s3, s4) be the state of MORUS-640 after initialization under 128 bit secret

key K and 128 bit public IV. Let AD1 = 0(128) and AD2 = 0(127)||1 be two 128 bit blocks of
authenticated data that differ only in their least significant bit. Finally, let X and Y be the
internal states of MORUS after the second phase (processing of associated data) under AD1 and
AD2 respectively:

X = (x0, x1, x2, x3, x4) = StateUpdate(S
0
,AD1) , (4)

Y = (y0, y1, y2, y3, y4) = StateUpdate(S
0
,AD2) . (5)

Then the following statements are true:

1 x0 = y0 .

2 x1 and y1 differ only in the 33-th bit.

3 x2 and y2 differ only in the 89-th bit.

4 x3 and y3 differ only in the 106-th and 107-th bit.

5 x4 and y4 differ only in the 108-th and 115-th bit (with probability 1) and in the 33-th bit
with probability 1/2.

Note: all bits within the 128 bit words X and Y are counted starting from MSB (bit 1) down to
LSB (bit 128).
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Construction of the distinguisher

Let AD1, AD2, X = (x0, x1, x2, x3, x4) and
Y = (y0, y1, y2, y3, y4) be as in Theorem

Denote xj = (xj0, xj1, xj2, xj3) and yj = (yj0, yj1, yj2, yj3),
where |xji| = |yji| = 32 bits and 0 ≤ j ≤ 4, 1 ≤ i ≤ 3.

Let M be a 128 bit message block.

According to the enc. function the two ciphertexts C1 and
C2 resp. under AD1 and AD2 are expressed as:

C1 = M ⊕ x0 ⊕ (x1 ≪ 96)⊕ (x2 ∧ x3) , (6)

C2 = M ⊕ y0 ⊕ (y1 ≪ 96)⊕ (y2 ∧ y3) . (7)
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Distinguisher - analysis

Our analysis (using the statements from the Theorem) shows
that C1 and C2 differ in 4 bits in total.

they differ in the 65-th bit with probability 1 and

in the 89-th, 106-th and 107-th bit with probability 1/2
(for each of the three bits).

Conclusions:

Given the ciphertext C1 under message (AD1,M), an
attacker can predict 125 bits of an (unknown) ciphertext
C2 under a different message (AD2,M) with probability 1.

The same probability for a random oracle is 2−125.
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Distinguisher - analysis

The same technique can also trivially be extended to
distinguish pairs of plaintexts (AD1,M1) and (AD2,M2)
that contain also differences in the message words i.e.
AD1 6= AD2 and M1 6= M2 and such that the messages M1

and M2 have the same length as a single block:
|M1| = |M2| = 128.

In this case a difference in any k bits of M1 and M2 (other
than bits 89, 106 and 107) results in a difference in the
corresponding k bits of the ciphertexts C1 and C2 with
probability 1.
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Differential Biases After
Initialization



Differential Biases After Initialization

We describe differential biases in the words of the state
after initialization in reduced word versions of MORUS.

MORUS-160, version with 8 bit words (160 bit state),
MORUS-200, version with 10 bit words (200 bit state)

The rotation constants are the same as in the original
version modulo the word size.

For both small versions we initialize the input state to a
fixed random value.

We try all differences in one word of the IV and we
measure the probabilities with which differences in the
words of the state after the initialization appear.
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Differential Biases After Initialization - Example

Let X be an input state to MORUS-160 initialized as:

X = (3B, 77, E3, DE, F0, EC, D9, DD, 2F, D0, F5, C7, DF, 7E, C8, DD, E7, 1D, 3A, 73)

where IV = 3B77E3DE and K = F0ECD9DD.
Let X

′
= X ⊕∆X be a second input state that differs from X

only in the first (i.e. leftmost) word of the IV by the difference:

∆X = (AB, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Then the sixth word of the output difference ∆Y between the
corresponding output states Y and Y

′
after initialization is

expected to be 4 with probability 2−4.19.

P (∆X = (AB, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
Init.−−→

∆Y = (∗, ∗, ∗, ∗, ∗, 4, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗)) = 2−4.19

where ∗ denotes an unknown difference.
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Differential Biases After Initialization

Conclusions:

For MORUS-160 the best observed probability is 2−4.19 ,
while for MORUS-200 it is 2−6.

These values are higher than what is expected in the
random case resp. 2−8 and 2−10.

Due to the bitwise nature of the cipher, these results also
suggest that for the original 32 and 64 bit versions of
MORUS resp. MORUS-640 and MORUS-1280 we can
expect probabilities significantly higher than resp. 2−32

and 2−64.

Aleksandra Mileva Vesna Dimitrova Vesselin Velichkov

Analysis of the Authenticated Cipher MORUS (v1)



Collisions in the StateUpdate(S,M)
Function



Collisions in the StateUpdate(S,M) Function

Proposition

Let M, xi ∈ Zn
2 , i ≥ 0 and n ∈ {128, 256}, and let wi ≤ n and

bi ≤ n/4 be some rotation constants. Then the following function
FM : (Zn

2 )5 → (Zn
2 )5 is a permutation on (Zn

2 )5:

FM (xi, xi+1, xi+2, xi+3, xi+4)

= (Rotl xxx yy(xi ⊕ (xi+1 ∧ xi+2)⊕ xi+3 ⊕M, bi), xi+1, xi+2, (xi+3 ≪ wi), xi+4)

Each round of StateUpdate(S,M) can be represented as five
applications of the function Fmi , where mi = M for
i = {1, 2, 3, 4} and mi = 0(n) for i = 0:

(si, s(i+1), s(i+2), s(i+3), s(i+4)) = Fmi(si, s(i+1), s(i+2), s(i+3), s(i+4))

The function StateUpdate(S,M) is a permutation on (Zn
2 )5.
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Collisions in the StateUpdate(S,M) Function

Proposition

Let wi ≤ n and bi ≤ n/4, where i ≥ 0 and n = {128, 256}, be some
rotation constants. For all M1,M2 ∈ Zn

2 and each vector
(x0, x1, x2, x3, x4) ∈ (Zn

2 )5, the following holds:

FM1(x0, x1, x2, x3, x4) = FM2(M1 ⊕M2 ⊕ x0, x1, x2, x3, x4)

Corollary

For all M1,M2 ∈ Zn
2 , n = {128, 256} and each vector

(x0, x1, x2, x3, x4) ∈ (Zn
2 )5, the following holds:

StateUpdate((x0, x1, x2, x3, x4),M1) =

StateUpdate((x0,M1 ⊕M2 ⊕ x1,M1 ⊕M2 ⊕ x2,M1 ⊕M2 ⊕ x3,M1 ⊕M2 ⊕ x4),M2)
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On Producing a Tag Forgery



On Producing a Tag Forgery

Let (M1,AD1) be a pair of a 128 bit message block and a
128 bit associated data block encrypted by MORUS under
key K and IV
S0 = (s0, s1, s2, s3, s4) be the output of the initialization
phase and
S1 = (x0, x1, x2, x3, x4) = StateUpdate(S0,AD1) be the
output of the next phase (processing of associated data).

We want to find a 128 bit block ∆M and a 128 bit associated
data block AD2 6= AD1 that will relate StateUpdate(S0,AD1)
to StateUpdate(S0,AD2) as follow:

StateUpdate(S
0
, AD2) = (x0, x1 ⊕∆M,x2 ⊕∆M,x3 ⊕∆M,x4 ⊕∆M)

= (x0, x1, x2, x3, x4)⊕ (0
(n)

,∆M, ∆M, ∆M, ∆M)

= StateUpdate(S
0
,AD1)⊕ (0

(n)
,∆M, ∆M, ∆M, ∆M).
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On Producing a Tag Forgery

If such AD2 and ∆M exist, then using Corollary we can
construct the message M2 = M1 ⊕∆M that will produce a
collision in the internal state after the encryption phase:

StateUpdate(StateUpdate(S
0
,AD1),M1)

= StateUpdate((x0, x1, x2, x3, x4),M1)

= StateUpdate((x0,M1 ⊕M2 ⊕ x1,M1 ⊕M2 ⊕ x2,M1 ⊕M2 ⊕ x3,M1 ⊕M2 ⊕ x4),M2)

= StateUpdate((x0,∆M ⊕ x1,∆M ⊕ x2, ∆M ⊕ x3,∆M ⊕ x4),M2)

= StateUpdate(StateUpdate(S
0
,AD2),M2)

Since both pairs (AD1,M1) and (AD2,M2) have the same
adlen and msglen, the collision ultimately results in the same
tag for the messages M1 and M2.
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On Producing a Tag Forgery

As to finding the required blocks ∆M and AD2 we show that
this is equivalent to solving the following system of equations
for (x0, x1,∆A,∆M), where ∆A = AD1 ⊕AD2:


Rotr xxx yy(∆M ≫ w3, b1) = ∆A

Rotr xxx yy(∆M ≫ w4, b2) = ∆A

Rotr xxx yy(∆M, b3) = (∆M ≫ w3)⊕∆A

Rotr xxx yy(∆M, b4) = (x0 ∧ x1)⊕ (x0 ∧ (x1 ⊕∆M))⊕ (∆M ≫ w4)

But,
No solution was found apart from the trivial one:
(∆M,∆A) = (0, 0).
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Conclusions

We presented the first external analysis of the authenticated
cipher MORUS.

We reported the following new observations:

(1) distinguisher with probability 1 in a nonce-reuse
scenario,

(2) differential biases in the words of the state after
initialization and

(3) collision on the StateUpdate function of MORUS.

Our results do not threaten the security of the scheme and
indicate that MORUS is a well-designed cipher.
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Thank you for your attention!


